PyTorch——使用GPU

本文档介绍了如何在PyTorch中利用GPU进行深度学习计算。内容包括查看GPU信息、判断GPU是否可用、获取GPU数量和名称,以及如何将Tensor和模型迁移到GPU上进行运算。使用`.cuda()`方法可将Tensor和模型转换到GPU,同时提供了检查Tensor和模型设备属性的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考链接

  1. https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter04_DL_computation/4.6_use-gpu

查看GPU信息

!nvidia-smi  # 对Linux/macOS用户有效
查看GPU是否可用
torch.cuda.is_available()
查看GPU数量
torch.cuda.device_count()
查看当前GPU索引号
torch.cuda.current_device()
查看GPU名字
torch.cuda.get_device_name(0)

Tensor的GPU计算

使用.cuda()可以将CPU上的Tensor转换(复制)到GPU上。如果有多块GPU,我们用.cuda(i)来表示第 ii 块GPU及相应的显存(ii从0开始)且cuda(0)和cuda()等价。

x = x.cuda(0)

通过Tensor的device属性来查看该Tensor所在的设备。

x.device

我们可以直接在创建的时候就指定设备。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

x = torch.tensor([1, 2, 3], device=device)
# or
x = torch.tensor([1, 2, 3]).to(device)

模型的GPU计算

同Tensor类似,PyTorch模型也可以通过.cuda()转换到GPU上。我们可以通过检查模型的参数的device属性来查看存放模型的设备。

net = nn.Linear(3, 1)
print(list(net.parameters())[0].device)

net.cuda()
print(list(net.parameters())[0].device)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值