FZU 2129 子序列个数 (动态规划)

子序列计数DP算法
本文介绍了一种使用动态规划解决子序列计数问题的方法,通过分析元素在序列中首次出现和重复出现的情况,有效避免了重复计算,提高了算法效率。

题意:找出一个序列全部子序列的个数

思路:直接暴力找不行,因为有相同的元素。
要用dp的思想去找。
令f[i] = 前i个元素的全部子序列。
又分为以下两种情况

  1. 当第i个元素在之前从来没有出现过时,f[i] = f[i-1] + f[i-1] +1。因为f[i-1] 就是一个子序列集合,另外再在他们后面加一个元素又是f[i-1],最后那个元素本身也是一个序列。
  2. 当第i个元素在之前出现过时, f[i] = f[i-1] + f[i-1] - f[ i元素最后一次出现的位置 -1] , 第一个f[i-1]没有问题,但是第二个之中会有重复的情况,也就是i 元素顶替上一个相同元素出现在子序列时的重复情况,需要减出来。

代码

#include<bits/stdc++.h>
#define MOD 1000000007
#define MAXN 1000005
typedef long long LL;
LL f[MAXN];
int last[MAXN],a,n;
int main()
{
	while(~scanf("%d",&n))
	{
		memset(last,0,sizeof(last));
		f[0]=0;
		for(int i=1;i<=n;++i)
		{
            scanf("%d",&a);
			f[i]=(f[i-1]<<1)%MOD; 
			if(!last[a]) last[a]=i,f[i]++;
			else f[i]=(f[i]-f[last[a]-1]+MOD)%MOD,last[a]=i;
		}
		printf("%lld\n",f[n]%MOD);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值