YOLO算法:实时目标检测核心技术解析

一、核心原理与架构

  1. 基本思想
    YOLO是一种单阶段目标检测算法,将检测任务转化为回归问题,通过单次前向传播同时预测边界框(Bounding Box)和类别概率。与传统的两阶段检测器(如Faster R-CNN)不同,YOLO无需生成区域提议(Region Proposal),因此速度更快。

  2. 工作流程

    • 网格划分:输入图像被划分为 $ S \times S $ 网格(如YOLOv1的 $ 7 \times 7 $),每个网格负责检测中心点落在该区域内的物体。
    • 边界框预测:每个网格预测 $ B $ 个边界框(如YOLOv1的 $ B=2 $),每个框包含5个参数:中心坐标 (x,y)(x, y)(x,y)、宽高
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔王阿卡纳兹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值