1.图割
图割图像分割的思想是用图来表示图像,并对图进行划分以使割代价EcE_cEc最小。在用图表示图像时,增加两个额外的节点,即汇点和源点;并仅考虑那些将源点和汇点分开的割。
建立上述有向图,初始化它的权重,并使用最大流法切割这个有向图(输出路径cut):
from pygraph.classes.digraph import digraph
from pygraph.algorithms.minmax import maximum_flow
gr = digraph()
gr.add_nodes([0,1,2,3])
gr.add_edge((0,1), wt=4)
gr.add_edge((1,2), wt=3)
gr.add_edge((2,3), wt=5)
gr.add_edge((0,2), wt=3)
gr.add_edge((1,3), wt=4)
flows,cuts = maximum_flow(gr, 0, 3)
print ('flow is:' , flows)//最大流
print ('cut is:' , cuts)//切割路径
结果:
使用实际的图片演示上述原理:
代码:
im = array(Image.open("empire.jpg"))
im = imresize(im, 0.07)
size = im.shape[:2]
print ("OK!!")
# add two rectangular training regions
labels = zeros(size)
labels[3:18, 3:18] = -1
labels[-18:-3, -18:-3] = 1
print ("OK!!")
# create graph
g = graphcut.build_bayes_graph(im, labels, kappa=1)
# cut the graph
res = graphcut.cut_graph(g, size)
print ("OK!!")
figure()
graphcut.show_labeling(im, labels)
figure()
imshow(res)
gray()
axis('off')
show()
运行结果,左图黄色框出的为前景,蓝色框出的为背景;右图为cut后的效果:
使用聚类来分割:
代码:
im = array(Image.open('C-uniform03.ppm'))
m, n = im.shape[:2]
# resize image to (wid,wid)
wid = 50
rim = imresize(im, (wid, wid), interp='bilinear')
rim = array(rim, 'f')
# create normalized cut matrix归一化切割矩阵
A = ncut.ncut_graph_matrix(rim, sigma_d=1, sigma_g=1e-2)
# cluster聚类
code, V = ncut.cluster(A, k=3, ndim=3)
codeim = imresize(code.reshape(wid,wid),(m,n),interp='nearest')
figure()
imshow(codeim)
gray()
show()
其中特征向量以V返回。
原图:
结果图: