前言
好久不见(鞠躬最近处在转型期,每天忙到飞起,关注具体技术细节的精力自然就比较少了(上一篇许下的周更承诺也食言了 = =)。上周帮助他人快速解决了一个因误用Flink状态类型引发的性能问题,在这里做个quick notes,并简要介绍一下Flink状态序列化方面的基础知识。
问题及排查
上游部门同事反馈,一个计算逻辑并不复杂的多流join DataStream API作业频繁发生消费积压、checkpoint失败(现场截图已丢失)。作业拓扑如下图所示。
为了脱敏所以缩得很小 = =
按大状态作业的pattern对集群参数进行调优,未果。
通过Flink Web UI定位到问题点位于拓扑中倒数第二个算子,部分sub-task checkpoint总是过不去。观察Metrics面板,发现有少量数据倾斜,而上下游反压度量值全部为0。
经过持续观察,存在倾斜的sub-task数据量最多只比其他sub-task多出10%~15%,按照常理不应引起如此严重的性能问题。遂找到对应的TaskManager pod打印火焰图,结果如下。
可见RocksDB状态读写的耗时极长,大部分时间花在了Kryo序列化上,说明状态内存储了Flink序列化框架原生不支持的对象。直接让相关研发同学show me the code,真相大白:
private transient MapState<String, HashSet<String>> state1;
private transient MapState<String, HashSet<String>> state2;
private transient ValueState<Map<String, String>> state3;
Flink序列化框架内并没有针对HashSet的序列化器,自然会fallback到Kryo。即使这些Set并不算大,状态操作的开销也会急剧上升。当然,ValueState<Map<String, String>>
用法也是错误的,应改成MapState<String, String>
。
最快的临时解决方法很简单:把所有状态内用到的HashSet全部改成Map<String, Boolean>
,同样可以去重。虽然并不优雅,但因为有了原生MapSerializer
支持,效率大幅提升。下面简要介绍Flink的状态序列化。
TypeSerializer
在我们创建状态句柄所需的描述符StateDescriptor
时,要指定状态数据的类型,如:
ValueStateDescriptor<Integer> stateDesc = new ValueStateDescriptor<>("myState", Integer.class);
ValueState<Integer> state = this.getRuntimeContext().getState(stateDesc);
与此同时,也就指定了对应数据类型的Serializer。我们知道,TypeSerializer
是Flink Runtime序列化机制的底层抽象,状态数据的序列化也不例外。以处理Map类型的MapSerializer
为例,代码如下,比较清晰。
@Internal
public final class MapSerializer<K, V> extends TypeSerializer<Map<K, V>> {
private static final long serialVersionUID = -6885593032367050078L;
/** The serializer for the keys in the map */
private final TypeSerializer<K>