P1073 最优贸易

商人阿龙在C国旅行,利用不同城市间水晶球价格差赚取旅费。通过SPFA算法,从1号城市和n号城市分别寻找最低买入价和最高卖出价,以确定最大利润。如果无法赚取差价,则不进行贸易,输出0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最优贸易

题目描述
C C国有 n n个大城市和 mm 条道路,每条道路连接这 nn个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 mm 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 1条。

C C国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。

商人阿龙来到 CC 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 CC 国 n 个城市的标号从 1~ n1 n,阿龙决定从 1 1号城市出发,并最终在 nn 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 nn 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 CC 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。

假设 C C国有 55个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。

假设 1~n1 n 号城市的水晶球价格分别为 4,3,5,6,14,3,5,6,1。

阿龙可以选择如下一条线路:11->22->33->55,并在 2 2号城市以 33 的价格买入水晶球,在 33号城市以 5 5的价格卖出水晶球,赚取的旅费数为 2。

阿龙也可以选择如下一条线路 11->44->55->44->55,并在第1 1次到达 55 号城市时以 1 1的价格买入水晶球,在第 22 次到达 44 号城市时以 66 的价格卖出水晶球,赚取的旅费数为 55。

现在给出 n n个城市的水晶球价格,mm 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。

输入格式
第一行包含 22 个正整数 n n和 mm,中间用一个空格隔开,分别表示城市的数目和道路的数目。

第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城市的商品价格。

接下来 mm 行,每行有 3 3个正整数x,y,zx,y,z,每两个整数之间用一个空格隔开。如果 z=1z=1,表示这条道路是城市 x x到城市 y y之间的单向道路;如果 z=2z=2,表示这条道路为城市 x x和城市y y之间的双向道路。

输出格式
一 个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出 00。

输入输出样例
输入
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
输出
5
说明/提示
【数据范围】

输入数据保证 11 号城市可以到达 n n号城市。

对于 10%的数据,1≤n≤61≤n≤6。

对于 30%的数据,1≤n≤1001≤n≤100。

对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。

对于 100%的数据,1≤n≤1000001≤n≤100000,1≤m≤5000001≤m≤500000,1≤x1≤x,y≤ny≤n,1≤z≤21≤z≤2,1≤1≤各城市

水晶球价格≤100≤100。

NOIP 2009 提高组 第三题我A了!!
分析,其实本蒟蒻一开始并不马上想到AC答案
一开始思想:
一个SPFA套一个SPFA,每搜到一个点的最小买入价,就从当前点再SPFA找从当前点到n点的最大买出价,但是会TLE

AC思想:
用两个SPFA分别从1点(最小,从1向后)和n点(最大,从n向前)进行遍历

code:

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
struct node
{
   
   
	int x,y,next,sum;
} a[1143240],b[1324110];
int n,m;
int dis[1341140],h[1423024],t=0,f[3][13213410],z[11424430],tt=0,hh[11324440],maxn[11432440],minn[114234320];
void add(int xx,int yy,int zz)
{
   
   
	a[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值