Eviews回归结果解读

最近涨了很多粉,看来大家对eviews的操作都很有兴趣,鉴于关注我的大多数是我的小白学生客户,所以我整理了一些基础知识帮大家快速入门,方便大家读懂模型结果。 简单的多元线性回归模型大家是使用最多的,但是很多同学跟着百度操作出来之后看不懂结果指标的含义,这篇内容就教大家如果去看结果,并解读各指标。 首先过程很简单,数据录入,然后ls y x1 x3 c,或者直接点击quick-estimate equation,模型拟合结果就出来了。 以下为举例结果:  模型为:y=1.691401x1-0.121717x3+0.5775209 重要的指标:
coefficient:系数,表明x与y的数据关系,正数表示正相关,负表示负相关,c为常数项或者是截距项,此结果x1对y有正影响,x3对y有负影响。
prob.:显示了在服从t分布条件下,对应其左侧一列t统计量的概率,即判断系数是否显著。一般p<0.05,即认为显著。此结果x1,x3都显著。
R-squared:可决系数,表现了模型的拟合度。越接近1代表模型拟合度越好,但很多金融类的模型r2都很低。
Prob(F-statistic):模型的显著性,小于0.05为显著。是由上面的F统计量的值计算出的概率。
一般快速看模型结果学习以上几个就可以了,想要全部了解的可以往下细看。
adjusted R-squared:调整的可决系数。当两个以上自变量时通常关注此值作为模型拟合度。
S.E. of regression:回归的标准误差。这是一个对预测误差大小的总体度量,是对残差大小的衡量。
Sum squared resid:残差平方和。
Log likelihood:对数似然估计值。这是在系数估计值的基础上对对数似然函数的估计值(假定误差服从正态分布)。
Mean dependent var:被解释变量的样本均值。
S.D. dependent var: 被解释变量的样本标准差。
Akaike info criterion:赤池信息准则,即AIC,一般来说AIC越小越好。
Schwartz criterion:施瓦茨准测,即sc
Hannan-quinn criter:HQ信息准则(很少用)
Durbin-watson stat:即DW统计量。对序列相关性进行检验的统计量,一般在2左右表示不具有序列相关性,具体计算判断可见前面模型修正的文章。

原文链接:https://blog.csdn.net/weixin_29325515/article/details/112563169

### 如何使用 EViews 进行截面数据分析与回归操作 #### 数据准备 在进行回归分析之前,需先导入截面数据到 EViews 中。可以通过 Excel 或 CSV 文件导入数据集,并将其转换为工作文件格式。确保每一列对应一个变量,每行为不同的观测对象。 #### 创建方程并运行回归 打开 EViews 后,在菜单栏选择 `Quick -> Estimate Equation` 来创建一个新的方程窗口。在此窗口中输入回归模型的表达式,例如: ```plaintext Y C X1 X2 X3 ``` 其中,`Y` 是因变量,`C` 表示常数项,而 `X1`, `X2`, 和 `X3` 则是自变量[^2]。 完成上述设置后点击 OK 键即可执行 OLS(普通最小二乘法)估计过程。此时会弹出结果页面展示各项统计指标以及参数估计值。 #### 结果解读 得到的结果表格包含了多个重要部分:系数估计值及其标准误、t 统计量和 p 值用于判断各解释变量是否具有统计学意义;R² 显示模型对于样本总体变异性的解释能力大小;F 检验则用来评估整个多元线性关系的有效程度。如果某些独立因素对应的p-value大于预设阈值(如0.05),可能意味着这些因子对目标现象的影响并不显著[^3]。 另外值得注意的是当处理大规模空间异质性和时间动态变化的数据集合时, 单纯依赖固定效应或者随机效应可能会导致欠佳的表现, 此类情况下可考虑采用更复杂的建模策略比如广义矩估计(GMM)[^1]. #### 图形化表示 为了更好地理解预测结果,Eviews还提供了多种绘图选项帮助直观呈现趋势走向及不确定性范围。双击图表区域能够进入编辑模式调整样式至适合需求的形式, 例如条形图可用于对比不同类别之间的均值差异. ```python # 示例 Python 实现简单线性回归 (仅作参考用途) import statsmodels.api as sm data = {'Y': [1,2,3], 'X1':[4,5,6]} df = pd.DataFrame(data) model = sm.OLS(df['Y'],sm.add_constant(df[['X1']])) results = model.fit() print(results.summary()) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值