tensorflow中的乘法

这篇博客介绍了在 TensorFlow 中如何进行向量和矩阵的乘法操作,包括代数乘法(使用 `matmul` 函数)和对应元素相乘(使用 * 号)。内容涵盖不同类型的乘法实例,如向量间的乘法、矩阵乘向量及矩阵的乘法,并强调了在执行这些运算时的注意事项,例如维度匹配的要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在tensorflow中向量、矩阵乘法大概可以分为两种:1、代数乘法;2、对应元素相乘

这两种运算使用两种运算模式:代数乘法使用matmul。对应元素相乘使用*号。下面给出例子。

一、代数乘法(使用函数matmul)

代数乘法就是高等代数(线性代数)中行列对应元素相乘再求和。

1、两个向量间相乘。w是1xn的行向量,x是nx1的列向量,相乘的结果是一个1x1的向量。

y=\omega^Tx=\sum\limits^n_{i=1}\omega_i x_i

import tensorflow as tf

w =tf.random.normal([1, 6], mean=-1, stddev=4)
x =tf.random.normal([6,1])
print(w,x)
print(tf.matmul(w,x))

2、一个矩阵乘以一个向量。A是一个nxm的矩阵,x是一个mx1的列向量,相乘的结果是一个nx1的列向量。

y=Ax=(y_i)=(\sum\limits^m_{j=1}a_{ij}x_j)

其中每个元素

w =tf.random.normal([5, 6], mean=-1, stddev=4)
x =tf.random.normal([6,1])
print(w,x)
print(tf.matmul(w,x))

3、两个矩阵相相乘。A是一个n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值