
大模型智之LangChain
文章平均质量分 94
LLMChain 的三大核心组成部分:
要有效运用 LLMChain,需重点把握以下三个关键要素:
1. LLM(大型语言模型):这是执行任务的核心模型,例如 OpenAI 的 GPT 或阿里云的 ChatTongyi。
2. Prompt Template(提示模板):用于定义与模型交互时的语
Black_Rock_br
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
掌握高效大模型任务流搭建术(二):链式流程如何赋能 AI 处理能力提升
在上一篇文章中,我们初步探索了 LangChain 的基础链式操作——LLMChain。它巧妙地将大语言模型(LLM)与提示模板(Prompt Template)相结合,为模型交互逻辑的封装提供了一种简洁而高效的方式。然而,LangChain 的强大之处远不止于此。在 LLMChain 的基础上,LangChain 还提供了众多实用的 Chain 工具,其中 Sequential Chain 尤为引人注目。原创 2025-03-06 23:53:29 · 1225 阅读 · 0 评论 -
掌握大模型高效任务流搭建(一):构建LangChain任务流
在LangChain框架中,“链”占据着核心地位。它允许我们将众多任务模块串联起来,构建出富有弹性的任务流。借助这种链式结构,我们能够处理复杂的逻辑,并实现任务的自动化。在实际场景里,链式操作极大地优化了大模型的调用管理。它不仅支持单步任务的执行,还能让多步任务相互协作、整合,进而应对更为复杂多变的业务挑战。准备工作:具体步骤如下:安装 LangChain 及其相关依赖。在.env文件或环境变量中配置 API Key。如果使用的是自定义或其他私有大模型,还需要进行相应的 SDK 设置。原创 2025-03-02 17:34:14 · 1155 阅读 · 0 评论 -
LangChain 动态任务分发:开启大模型任务流的巅峰之术(三)
通过这种方式,我们构建了一个总路由机制,能够根据不同的学科问题,精准地将其分流到相应的链进行处理,从而实现高效的任务分发与管理。这种灵活而高效的设计,使其在面对多类型问题或任务时,能够游刃有余地应对各种复杂场景,例如根据不同用户输入的问题类别,精准调用相应的模型提示或算法。在每次循环中,从 `p` 中提取 `p['name']` 和 `p['description']`,并将它们组合成一段描述性的字符串,例如 “physics: 适合回答有关物理的问题”。而物理问题的链则具备处理物理现象和规律分析的能力。原创 2025-03-18 10:23:46 · 1103 阅读 · 0 评论