【矩阵论笔记】矩阵特征矩阵的行列式因子、不变因子、初等因子

本文深入探讨了矩阵的Smith标准型及其求解方法,详细介绍了矩阵的特征值、行列式因子、不变因子和初等因子的概念,以及它们之间的关系。通过实例讲解了如何通过初等变换将矩阵化为Smith标准型。

矩阵的特征值矩阵是由矩阵特征值λ\lambdaλ构成的矩阵。包含三个运算:
1、互换两行(列)
2、某行(列)乘非零常数
3、某行(列)乘多项式后加到另一行
n阶λ\lambdaλ矩阵可逆的充要条件是:A(λ)=非零常数A(\lambda)=非零常数A(λ)=
因为初等变换不改变矩阵的行列式因子和不变因子,所以可以通过初等变换来求smith标准型。


由此引出smith标准型的概念:
1、最高次幂系数为1
2、d(λi)d(\lambda_i)d(λi)能够整除d(λi+1)d(\lambda_{i+1})d(λi+1)
3、λ\lambdaλ矩阵的smith标准型是唯一的

用上面的三个运算可以把一个λ\lambdaλ矩阵化为smith标准型,举例:
在这里插入图片描述
技巧:
在这里插入图片描述


这样求smith标准型比较麻烦,容易出错。接下来就引出了求smith标准型的第二种方法,为了学会这个方法,先要了解一些概念。

  1. 行列式因子
    k阶行列式因子是A(λ)A(\lambda)A(λ)中全部非零k阶子式的最高次幂系数为1的最大公因式。
    在这里插入图片描述
    上式中,分别求得了各阶的非0子式,然后在每一阶中找到最大公共子式,这就是行列式因子。
    性质:等价的λ\lambdaλ矩阵具有相同的秩和相同的各阶行列式因子。
    行列式因子就是smith标准型对角线上的元素。

  2. 不变因子
    不变因子就是smith标准型对角线上的相邻元素之商。
    在这里插入图片描述
    例:
    在这里插入图片描述
    如果一阶子式有一个数字,那么一阶行列式因子就是1。
    性质:两个λ\lambdaλ矩阵等价的充要条件是具有相同的行列式因子,有相同的不变因子。

  3. 初等因子
    对不变因子做因式分解,得到1次因式方幂。
    在这里插入图片描述

性质:
一、分块矩阵的初等因子是各个块的初等因子。
在这里插入图片描述
二、Jorden矩阵的初等因子为 在这里插入图片描述

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值