【矩阵论笔记】最小多项式与Jordan型的关系

本文深入探讨了方阵的最小多项式概念,包括其定义、计算方法及与Jordan块的关系。介绍了如何利用最小多项式简化方阵多项式计算,并讨论了最小多项式在矩阵对角化中的作用。

最小多项式

方阵A的次数最低、且首一的零化多项式称为A的最小多项式。
在这里插入图片描述

最小多项式的一般形式

在这里插入图片描述
算这个没什么办法,只能暴力计算,从m=1开始算,把A带进去是不是等0。

Jordan块的最小多项式是他的特征多项式,阶数不能再降了。

在这里插入图片描述

例题

在这里插入图片描述
在这里插入图片描述
A1A_1A1是一个Jordan块,他的最小多项式不将阶。
在这里插入图片描述
这时候A2A_2A2的最小多项式只有两种情况,从1阶开始试。然后取最小共倍数,构成原来矩阵的最小多项式。
在这里插入图片描述
有了最小多项式就可以简化方阵多项式的计算。

定理:相似矩阵有相似的最小多项式
N阶方阵可对角化的充要条件是最小多项式无重根。

最小多项式与Jordan的关系

在这里插入图片描述

性质

在这里插入图片描述

上面的nin_ini是代数重数,是子Jordan的阶数。
子Jordan矩阵是由Jordan块构成,Jordan块的个数是由λi\lambda_iλi的几何重数构成kik_iki

在这里插入图片描述
这些Jordan块的阶和最小多项式有关,最小多项式的幂就是Jordan块的阶。
在这里插入图片描述

例题

代数重数就是特征多项式的幂,阶数就是总的幂数之和。
在这里插入图片描述
在这里插入图片描述
根据最小多项式得出子Jordan块的最高阶数
在这里插入图片描述
在这里插入图片描述

简化方阵多项式的计算

1、相似化简成对角阵
2、通过零化多项式对多项式降阶

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值