
MBSE(Model-Based Systems)
文章平均质量分 91
MBSE 是一种以模型为中心的系统工程实践,其目标是减少对大量文字化文档的依赖,转而采用可视化的模型来表达复杂系统的结构和行为。这种方法可以显著提高设计的一致性、正确性和完整性。
Bol5261
Begin here!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
OpenCV 的一些基本用法,包括图像的读取、显示、修改和保存,以及视频处理的基础
OpenCV 的一些基本用法,包括图像的读取、显示、修改和保存,以及视频处理的基础下面为你提供一个使用 Python 生成视频的脚本。此脚本能够把一系列图像合成视频,也可以生成带有移动图形的动画视频。此脚本有两个主要功能:1. `images_to_video` 函数:能够把指定文件夹里的图片合成为视频。2. `generate_animation` 函数:可以生成一个带有移动彩色圆形的简单动画视频。原创 2025-07-07 22:42:19 · 450 阅读 · 0 评论 -
AI工具的应用场景非常广泛,从内容创作、设计、开发到翻译和搜索,几乎涵盖了所有需要自动化和智能化的领域
AI工具通过“自动化”“智能化”“个性化”三大能力,不仅提升各行业效率,更推动从“重复劳动”向“创意决策”的转型。未来,随着多模态大模型(如能同时处理文本、图像、视频的GPT-6级模型)的发展,其应用场景还将向更复杂的领域(如科学发现、量子计算辅助)延伸。原创 2025-07-05 19:23:39 · 925 阅读 · 0 评论 -
Google在人工智能领域投入巨大,通过收购众多初创公司不断扩充其AI版图
- Anthropic 是一家新兴的人工智能初创公司,由多位人工智能领域的专家创立。它专注于开发安全、可靠的人工智能系统。Anthropic 的优势在于其对人工智能伦理和安全的重视。原创 2025-07-05 19:04:33 · 763 阅读 · 0 评论 -
人工智能(AI)作为当今科技领域的核心驱动力,正以前所未有的速度渗透到各个行业,深刻改变着人们的生产生活方式
AI 在医疗健康、金融科技、教育、交通出行、娱乐和客服等领域的应用已经取得了显著成效,为各行业带来了巨大的发展机遇和变革。然而,AI 应用也面临着数据质量与隐私安全、算法可解释性、伦理与法律等诸多挑战。未来,AI 将与更多领域融合发展,边缘计算与 AI 的结合将更加紧密,AI 民主化进程将加速推进,同时伦理与法律规范也将不断完善。企业和社会应积极应对挑战,抓住发展机遇,推动 AI 技术的创新和应用,实现可持续发展。原创 2025-07-05 18:57:00 · 925 阅读 · 0 评论 -
Google Colab、Amazon SageMaker和Hugging Face都是常用的机器学习平台,它们在功能、适用场景等方面各有特点
通过以上步骤,你可以快速掌握Google Colab和Amazon SageMaker的基本使用方法。实际应用中,建议根据项目规模、预算和团队协作需求选择合适的平台。原创 2025-07-05 18:50:39 · 759 阅读 · 0 评论 -
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,提供了大量的图像处理和计算机视觉算法
- **DALL-E**:是OpenAI开发的图像生成模型,基于深度学习技术,能够根据文本描述生成相应的图像。它可以生成各种风格和主题的图像,适用于创意设计、插画生成、广告制作等领域,为图像创作提供了新的方式和思路,推动了计算机视觉在图像生成方向的发展。原创 2025-07-05 18:39:40 · 750 阅读 · 0 评论 -
人工智能框架是用于开发和部署机器学习、深度学习模型的核心工具,通过封装底层计算逻辑(如神经网络搭建、自动微分、分布式训练等)
人工智能框架是用于开发和部署机器学习、深度学习模型的核心工具,通过封装底层计算逻辑(如神经网络搭建、自动微分、分布式训练等),大幅降低了算法开发门槛。以下是对常见框架的详细解析:原创 2025-07-05 18:36:35 · 890 阅读 · 0 评论 -
其中最常用的是基于 VADER (Valence Aware Dictionary and sEntiment Reasoner) 算法的情感分析器,适合社交媒体文本等短文本的情感分析
- **模型复杂性**:虽然使用方便,但模型的复杂性可能导致用户难以理解其内部工作机制。例如,对于没有深度学习背景的用户,可能难以对模型进行优化和调整。原创 2025-07-05 18:31:21 · 910 阅读 · 0 评论 -
AI Agent确实可以识别文本中的情感倾向,这通常被称为情感分析(Sentiment Analysis)或情感检测
- **社交软件领域**:心遇APP对用户行为数据、兴趣标签、情感需求进行深度分析,融合自然语言处理与心理学理论,能精准识别用户潜在需求。该平台还会捕捉用户在聊天中使用的表情符号频率,作为情感倾向分析维度,从而更精准地为用户匹配合适的交友对象,提升社交效率和质量。原创 2025-07-05 18:28:51 · 841 阅读 · 0 评论 -
智能体是指能够通过传感器感知环境,基于内部知识和算法自主决策,并通过执行器对环境产生影响的系统
智能体作为人工智能落地的核心载体,正从单一功能工具向复杂协同系统进化。其发展不仅依赖算法突破,更需与行业场景深度结合,在解决实际问题的同时,逐步完善伦理、安全等底层框架。从家庭到工业,从物流到金融,智能体的自主决策能力正在重新定义“效率”与“智能”的边界。原创 2025-07-05 18:24:29 · 845 阅读 · 0 评论 -
人工智能(AI)和机器学习(ML)是当今科技领域的重要技术,它们在智能助手和推荐系统等应用中发挥着关键作用
人工智能与机器学习是智能助手和推荐系统的技术基石,前者通过NLP和知识推理实现人机交互,后者通过数据挖掘和算法优化实现精准匹配。随着技术迭代,两者将更深度融合,同时需关注伦理与安全问题,确保技术服务于用户价值。原创 2025-07-05 18:20:14 · 818 阅读 · 0 评论 -
Agent根据感知到的环境信息,结合其内部的决策机制(如规则引擎、机器学习模型、神经网络等)来决定下一步的行动
通过自动驾驶汽车的案例可见,智能代理的技术架构与工作流程不仅是技术模块的堆砌,更是融合环境感知、认知推理、决策执行与学习进化的复杂智能系统,其设计逻辑贯穿人工智能从理论到应用的核心挑战。原创 2025-07-05 18:13:39 · 844 阅读 · 0 评论 -
网络爬虫(Web crawler)是一种按照一定的规则,自动地在互联网上抓取网页数据的程序或者脚本
- 网络爬虫(Web crawler)是一种按照一定的规则,自动地在互联网上抓取网页数据的程序或者脚本。Agent(智能代理)通常是指能够感知环境并作出决策以实现特定目标的实体。从这个定义来看,网络爬虫可以看作是一种agent。原创 2025-07-05 18:09:02 · 1354 阅读 · 0 评论 -
AI Agent能够在客户支持中提供高效、精准且个性化的服务,提升客户满意度和忠诚度
“Agent”作为“特工”概念时,其实践方案通常围绕情报收集、任务执行、行动支持等核心需求展开,涉及人员选拔、技能训练、任务规划及资源配置等多个维度。以下是从不同应用场景和操作层面梳理的实践方案:原创 2025-07-05 18:04:45 · 856 阅读 · 0 评论 -
GCP Agent(Google Cloud Platform Agent)是谷歌云平台中用于管理、监控和数据收集的工具,它就像谷歌云资源的“管家”,能帮你自动完成很多繁琐的任务
在Google Cloud Platform(GCP)中,AI Agent(智能体)是一种能够自主执行任务、进行推理和决策的软件系统。GCP提供了强大的工具和框架来构建、管理和部署AI Agent,以下是其主要功能和相关工具:原创 2025-07-05 17:59:05 · 611 阅读 · 0 评论 -
云计算平台(如AWS、Azure、GCP)提供了灵活的计算资源,可以根据AI Agent的需求动态扩展,无需购买和维护昂贵的硬件
你想访问国外的一个视频网站,但国内直接访问不了。这时候,你用一个国外的代理服务器: - 你告诉代理服务器:“我要访问xxx视频网站的某个视频。” - 代理服务器在国外,它能正常访问这个网站,把视频数据下载下来。 - 然后它把视频数据“打包”发给你,你就能看到视频了,而视频网站只知道是国外的代理服务器在访问它,不知道是你。原创 2025-07-05 17:56:50 · 780 阅读 · 0 评论 -
通过AI实战提效赋能与NETTY、ACO的技术融合,企业可在分布式系统、网络服务等场景中实现性能与智能化的双重升级,为数字化转型提供核心技术支撑
通过AI实战提效赋能与NETTY、ACO的技术融合,企业可在分布式系统、网络服务等场景中实现性能与智能化的双重升级,为数字化转型提供核心技术支撑。原创 2025-06-30 23:40:38 · 916 阅读 · 0 评论 -
AI在办公实战中的应用已渗透到多个环节,从日常事务处理到复杂决策支持,正逐步改变传统办公模式
- **文件自动化处理**:AI可以实现文件的自动分类、归档、检索等操作,提高文件管理效率。- **工作流程自动化**:AI可以将一些重复性的工作流程自动化,如自动生成报表、自动发送通知等,减少人工操作。原创 2025-06-30 00:27:55 · 668 阅读 · 0 评论 -
AI落地实战专家需兼具技术深度、业务洞察力与项目推进能力,以下从核心技能维度展开说
- 企业还可以通过数字化平台开展个性化定制服务。例如,一家服装企业利用大数据分析消费者的个性化需求,结合3D打印等技术,为消费者提供定制化的服装产品,提高客户满意度和产品附加值。原创 2025-06-30 00:25:18 · 1043 阅读 · 0 评论 -
AI写作的核心依托于自然语言处理(NLP)技术,其发展经历了从规则驱动到数据驱动的变革
- **个性化定制写作**:根据不同的用户需求和偏好,AI能够提供更加个性化的写作服务。比如,为个人用户提供符合其写作风格和语言习惯的文案创作,为企业用户提供符合其品牌形象和市场定位的营销文案等。原创 2025-06-30 00:21:59 · 809 阅读 · 0 评论 -
AI智能体的测评调试是确保其性能和功能符合预期的重要环节,而应用发布则是将其推向用户的关键步骤
- **应用更新**:根据用户反馈对应用进行更新。更新内容可能包括修复漏洞、优化性能、增加新功能等。每次更新后,都要进行充分的测试,确保更新没有引入新的问题,然后再将更新后的应用发布给用户。原创 2025-06-30 00:19:48 · 637 阅读 · 0 评论 -
基于业务场景的智能体搭建需要经过需求分析、系统设计、模型训练等多个步骤
- 将训练好的智能体与业务系统进行集成。在客户服务场景中,将智能体嵌入到客服平台,使其能够接收客户咨询请求并自动回复;同时与 CRM 系统集成,获取客户信息用于个性化服务。生产制造智能体要与生产设备控制系统、生产管理系统集成,实现对设备的控制和生产计划的更新。原创 2025-06-30 00:18:17 · 1026 阅读 · 0 评论 -
提示词(Prompt)是与AI模型交互的“语言”,其设计质量直接影响输出结果的准确性、相关性和实用性
在实际应用中,AI提示词工程和工作流节点构建可以相互结合。例如,在一个基于AI的智能客服工作流中,可以将AI提示词工程作为工作流中的一个节点,通过精心设计的提示词来引导AI模型生成高质量的客服回答,然后将这些回答传递到下一个工作流节点进行进一步的处理和反馈。原创 2025-06-30 00:16:05 · 938 阅读 · 0 评论 -
提示词(Prompt)是人与AI模型交互的“语言”,其质量直接影响输出结果的准确性、相关性和实用性
AI提示词工程是针对AI模型(尤其是自然语言处理模型)的输入提示进行设计、优化和管理的过程。这些提示词是用户与AI交互时提供给模型的文本信息,用于引导AI生成符合用户期望的输出。例如,当你向AI提问“请详细介绍一下人工智能在医疗领域的应用”时,“请详细介绍一下人工智能在医疗领域的应用”就是一条提示词。原创 2025-06-30 00:13:58 · 973 阅读 · 0 评论 -
知识库是组织或个人将知识进行系统化管理的重要工具,其建立过程涉及多个关键环节
在建立知识库和保障信息安全的过程中,需要综合考虑各种因素,采取多种措施,确保知识库的高效运行和信息安全。同时,随着技术的发展和业务的变化,还需要不断更新和完善相关的策略和措施。原创 2025-06-30 00:11:20 · 862 阅读 · 0 评论 -
基于业务场景的智能体搭建需要经过明确业务需求、选择模型、设计架构等多个步骤
- **用户体验优化**:从用户的角度出发,对智能体的交互界面和用户体验进行优化。例如,在电商推荐智能体中,优化推荐结果的展示方式,使其更加直观、易懂;在客服智能体中,优化对话流程,使其更加自然、流畅。原创 2025-06-30 00:09:03 · 843 阅读 · 0 评论 -
AI智能体的模式选择需结合应用场景、技术需求和功能目标综合考量,以下从核心模式分类、关键选型维度、典型场景适配等方面展开分析
AI智能体的模式选择需结合应用场景、技术需求和功能目标综合考量,以下从核心模式分类、关键选型维度、典型场景适配等方面展开分析:原创 2025-06-30 00:07:17 · 747 阅读 · 0 评论 -
如腾讯元器可作为智能客服助手,提供全天候的自动化服务,处理常见问题解答、售后咨询等
企业在引入智能体时,往往需要将其与现有的信息系统进行集成,这就涉及到技术集成和兼容性问题。不同的智能体可能采用不同的技术架构和接口标准,与企业原有的ERP、CRM等系统进行对接时可能会出现兼容性问题,导致数据传输不畅、系统运行不稳定等情况。例如,某企业在引入一款智能生产调度智能体时,由于该智能体与企业现有的生产管理系统在数据格式和接口规范上存在差异,在集成过程中花费了大量的时间和人力进行适配和调试,严重影响了项目的推进进度。为解决这一问题,企业在选择智能体产品时,应充分考虑其与现有系统的兼容性,优先选择那些原创 2025-06-30 00:05:11 · 662 阅读 · 0 评论 -
产线级智能体集群可实现设备预测性维护,通过振动传感器和时序数据分析,能将设备故障误报率从30%降至5%以下
- **行业应用**:在物流行业,智能体结合仓储机器人,实现自动分拣、路径规划,降低分拣错误率,提升仓库吞吐流转效率;在人力资源管理领域,部署在云端的智能面试官可弹性扩展处理海量视频面试数据,利用云GPU加速的多模态分析评估候选人匹配度。原创 2025-06-30 00:03:26 · 844 阅读 · 0 评论 -
基于业务场景的智能体搭建需要从需求分析入手,确定目标与功能后,进行系统设计、算法选择与模型训练,再经过编程实现、测试评估等步骤,最终部署上线并持续监控维护
基于业务场景的智能体搭建是一个系统性工程,需要综合考虑业务需求、技术选型、模型训练、部署和维护等多个环节,以确保智能体能够有效地服务于业务目标并持续优化性能。原创 2025-06-30 00:01:23 · 650 阅读 · 0 评论 -
搭建基于业务场景的智能体是一个复杂而系统的过程,需要综合考虑业务需求、技术实现、测试优化、部署维护等多个方面
- 根据业务场景需求,确定智能体需要具备的功能模块。以智能工厂生产调度场景为例,智能体可能需要具备任务分配、设备监控、物料调度等功能。对于智能体的每个功能模块,都要明确其输入、输出以及与其他模块的交互关系。例如,任务分配模块的输入是生产订单和设备状态信息,输出是具体的设备任务安排,它需要与设备监控模块实时交互以获取设备的可用性信息。原创 2025-06-29 23:59:44 · 957 阅读 · 0 评论 -
DeepSeek工作流进阶可以通过与其他工具结合,构建自动化工作流程以及优化文档处理等方式实现
- **学术研究领域**:对于Stata学者,DeepSeek可以辅助进行数据处理和分析,如通过编写Python程序结合DeepSeek的能力,快速抓取外部命令列表等,从而将学者从繁琐的事务性工作中解放出来,使其能够专注于高价值的学术研究活动。原创 2025-06-29 23:56:48 · 846 阅读 · 0 评论 -
AI在办公实战中的应用已覆盖多个场景,从基础的数据处理到复杂的决策支持,正逐步提升办公效率与质量
AI在办公实战中的应用已覆盖多个场景,从基础的数据处理到复杂的决策支持,正逐步提升办公效率与质量。以下是其在不同办公场景中的具体应用及价值体现:原创 2025-06-29 23:55:03 · 485 阅读 · 0 评论 -
AI在办公实战中的应用已渗透到各个环节,从日常事务处理到复杂决策支持,正不断重塑办公模式,提升效率与质量
- **资料整理与知识图谱构建**:AI可以帮助整理大量的资料和文档,构建知识图谱,方便用户快速查找和学习相关知识。- **个性化学习与培训**:AI可以根据用户的学习进度和特点,提供个性化的学习内容和培训方案。例如,通过AI驱动的在线课程,用户可以按照自己的节奏学习AI办公技能。原创 2025-06-29 23:49:11 · 733 阅读 · 0 评论 -
AI的底层逻辑是基于计算机科学,融合多学科知识,通过数据驱动和算法模型,让计算机模拟人类的学习、理解、思考和解决问题的能力
- **优化提示词**:明确提示词的五大核心要素,参考常见模板并不断优化迭代,针对同一任务编写不同提示词比较效果,以提升AI输出的准确性和相关性。原创 2025-06-29 23:46:47 · 533 阅读 · 0 评论 -
在Excel等表格工具中,AI函数可以一键完成数据清洗,自动识别并修正错误数据、填补缺失值
通过这些应用,AI能够帮助办公人员节省大量时间和精力,提高工作效率和质量,使他们能够更专注于创造性工作和决策制定。原创 2025-06-29 23:45:05 · 942 阅读 · 0 评论 -
模式匹配是字符串处理中的核心问题,其目标是在主串 `t` 中定位子串 `s`(即模式)的出现位
KMP算法通过构建部分匹配表(Next数组)来记录子串的前缀信息,并在匹配过程中利用这些信息避免不必要的回溯。这种方法显著提高了模式匹配的效率,特别适用于主串和子串较长的情况。原创 2025-06-25 23:01:07 · 735 阅读 · 0 评论 -
其中 KMP 算法是字符串匹配的经典高效算法,利用`next`数组(部分匹配表 )减少重复比较
在KMP算法中,next数组的计算是通过一个单独的循环完成的,这个循环遍历模式串的每个字符,计算每个位置的next值。由于这个循环会遍历整个模式串一次,所以其时间复杂度是线性的,即 \(O(ls)\)。原创 2025-06-25 22:50:25 · 982 阅读 · 0 评论 -
需要先计算出地址编号7000H至EFFFH的内存空间大小,然后确定需要多少片4K×8比特的存储器芯片
内存空间大小 = 结束地址 - 起始地址 + 1(包含两端地址) \(61439 - 28672 + 1 = 32768\) 字节,即 \(32KB\)(因为 \(1KB = 1024\) 字节)。原创 2025-06-25 22:43:52 · 335 阅读 · 0 评论 -
Cache的设计思想是在合理成本下提高命中率,通过选择合适的映射方式、替换算法和块大小等手段,实现对存储系统的优化,提高系统的整体性能
Cache的设计本质是对“局部性原理”的工程化应用——通过分析数据访问模式,用有限的高速存储(SRAM)缓存最可能被重复访问的数据,以“概率性命中”替代“全量高速存储”,在成本、功耗与性能间找到最优解。这一思想不仅适用于CPU缓存,也广泛应用于数据库缓存、Web缓存等计算机系统的各个层级。原创 2025-06-25 22:38:44 · 929 阅读 · 0 评论