计算机科学与信息系统中的推荐系统
1. 引言
推荐系统(Recommendation System, RS)已经成为信息检索(Information Retrieval, IR)、机器学习(Machine Learning, ML)和决策支持系统(Decision Support System, DSS)领域的重要组成部分。随着电子商务的快速发展、移动信息访问的普及以及社交网络的兴起,推荐系统的研究兴趣在过去几年中大幅增长。本篇文章将回顾计算机科学和信息系统领域中推荐系统的最新研究进展,识别现有趋势、开放问题以及未来研究的可能方向。
2. 推荐系统的研究背景
推荐系统的核心目标是根据用户的偏好和历史行为,为用户提供个性化的物品推荐。这些推荐可以是书籍、电影、音乐、新闻文章等各种类型的内容。推荐系统通过减少信息过载,帮助用户更快地找到他们感兴趣的信息,从而提高了用户体验。
2.1 推荐系统的主要研究视角
推荐系统可以从多个不同的视角进行研究,具体如下:
- 信息检索视角 :解决信息过载问题,识别与用户信息需求相关的项目。
- 机器学习视角 :学习一个模型,尽可能准确地预测用户对特定项目的反馈。
- 决策支持系统视角 :作为支持消费者决策过程的工具,提高决策质量。
3. 研究方法论
为了系统地评估推荐系统领域的最新研究进展,我们对2006年1月至2011年7月期间,在计算机科学(CS)和信息系统(I