给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
解题思路:
解法一:暴力法
class Solution {
public:
//暴力解法
int maxSubArray(vector<int>& nums) {
if(nums.empty()) return 0;
int max = INT_MIN;
int n = nums.size();
//两层循环
for(int i = 0; i < n; ++i) {
int sum = 0;
for(int j = i; j < n; ++j) {
sum += nums[j];
if(sum > max) {
max = sum;
}
}
}
return max;
}
};
解法二:一维数组DP
class Solution {
public:
//动态规划,一维数组
int maxSubArray(vector<int>& nums) {
//if(nums.empty()) return 0;
vector<int> dp(nums);
int n = nums.size();
//需要一个数来记录最后的返回结果
int res = dp[0];
for(int i = 1; i < n; ++i) {
//DP方程
dp[i] = max(dp[i], dp[i-1]+dp[i]);
res = max(res, dp[i]);
}
return res;
}
};
解法三:状态压缩,单个数DP
class Solution {
public:
//动态规划,一维数组
int maxSubArray(vector<int>& nums) {
//if(nums.empty()) return 0;
int dp = nums[0];
int n = nums.size();
//需要一个数来记录最后的返回结果
int res = dp;
for(int i = 1; i < n; ++i) {
//DP方程
dp = max(nums[i], dp+nums[i]);
res = max(res, dp);
}
return res;
}
};
解法四:贪心算法
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = INT_MIN;
int sum = 0;
for(int i = 0; i < nums.size(); ++i) {
sum += nums[i];
res = max(res, sum);
//如果sum小于0,则重新寻找子串
if(sum < 0) {
sum = 0;
}
}
return res;
}
};
解法五:分治法
class Solution {
public:
int maxSubArray(vector<int>& nums) {
return maxSubArray(nums, 0, nums.size() - 1);
}
private:
int maxSubArray(vector<int>& nums, int l, int r) {
if (l > r) {
return INT_MIN;
}
int m = l + (r - l) / 2, ml = 0, mr = 0;
int lmax = maxSubArray(nums, l, m - 1);
int rmax = maxSubArray(nums, m + 1, r);
for (int i = m - 1, sum = 0; i >= l; i--) {
sum += nums[i];
ml = max(sum, ml);
}
for (int i = m + 1, sum = 0; i <= r; i++) {
sum += nums[i];
mr = max(sum, mr);
}
return max(max(lmax, rmax), ml + mr + nums[m]);
}
};