LeetCode第53题解析

这篇博客介绍了LeetCode第53题的解题过程,探讨了如何寻找一个整数数组中具有最大和的连续子数组。文中详细解释了暴力法、动态规划、状态压缩、贪心算法以及分治法这五种不同的解决方案,并对每种方法进行了深入的思路解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

解题思路:

解法一:暴力法

class Solution {
public:
    //暴力解法
    int maxSubArray(vector<int>& nums) {
        if(nums.empty()) return 0;
        int max = INT_MIN;
        int n = nums.size();
        //两层循环
        for(int i = 0; i < n; ++i) {
            int sum = 0;
            for(int j = i; j < n; ++j) {
                sum += nums[j];
                if(sum > max) {
                    max = sum;
                }
            }
        }
        return max;
    }
};

解法二:一维数组DP

class Solution {
public:
    //动态规划,一维数组
    int maxSubArray(vector<int>& nums) {
        //if(nums.empty()) return 0;
        vector<int> dp(nums);
        int n = nums.size();
        //需要一个数来记录最后的返回结果
        int res = dp[0];
        for(int i = 1; i < n; ++i) {
            //DP方程
            dp[i] = max(dp[i], dp[i-1]+dp[i]);
            res = max(res, dp[i]);
        }
        return res;
    }
};

解法三:状态压缩,单个数DP

class Solution {
public:
    //动态规划,一维数组
    int maxSubArray(vector<int>& nums) {
        //if(nums.empty()) return 0;
        int dp = nums[0];
        int n = nums.size();
        //需要一个数来记录最后的返回结果
        int res = dp;
        for(int i = 1; i < n; ++i) {
            //DP方程
            dp = max(nums[i], dp+nums[i]);
            res = max(res, dp);
        }
        return res;
    }
};

解法四:贪心算法

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int res = INT_MIN;
        int sum = 0;
        for(int i = 0; i < nums.size(); ++i) {
            sum += nums[i];
            res = max(res, sum);
            //如果sum小于0,则重新寻找子串
            if(sum < 0) {
                sum = 0;
            }
        }
        return res;
    }
};

解法五:分治法

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        return maxSubArray(nums, 0, nums.size() - 1);
    }
private:
    int maxSubArray(vector<int>& nums, int l, int r) {
        if (l > r) {
            return INT_MIN;
        }
        int m = l + (r - l) / 2, ml = 0, mr = 0;
        int lmax = maxSubArray(nums, l, m - 1);
        int rmax = maxSubArray(nums, m + 1, r);
        for (int i = m - 1, sum = 0; i >= l; i--) {
            sum += nums[i];
            ml = max(sum, ml);
        }
        for (int i = m + 1, sum = 0; i <= r; i++) {
            sum += nums[i];
            mr = max(sum, mr);
        }
        return max(max(lmax, rmax), ml + mr + nums[m]);
    }
};

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值