线性代数中的方程组求解方法
1. 引言
在数学及其应用领域,线性方程组的求解是一个常见的问题。无论是工程设计、物理建模还是数据分析,都需要解决这类问题。本文将详细介绍线性方程组的求解方法,特别是高斯消元法(Gaussian elimination),并通过具体的例子和代码实现来帮助读者理解这些方法的应用。
线性方程组通常表示为:
[ a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 ]
[ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 ]
[ \vdots ]
[ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m ]
其中 ( A ) 是一个 ( m \times n ) 的系数矩阵,( \mathbf{x} ) 是一个 ( n \times 1 ) 的未知数向量,( \mathbf{b} ) 是一个 ( m \times 1 ) 的常数向量。当 ( m = n ) 时,该方程组被称为方阵方程组。
2. 方程组的表示
线性方程组可以用矩阵的形式简洁地表示为:
[ A\mathbf{x} = \mathbf{b} ]
其中:
- ( A ) 是一个 ( n \times n ) 的系数矩阵。
- ( \mathbf{x} ) 是一个 ( n \times 1 ) 的未知数向量。
- ( \mathbf{b} ) 是一个 ( n \times 1 ) 的常数向量。
例如,以下方