卷积神经网络架构综述
1. DenseNet 概述
DenseNet 采用具有密集跳跃连接网络的卷积模块。以下是 DenseNet 相关信息总结:
- 发表 :Gao Huang 等人于 2016 年发表 “Densely Connected Convolutional Networks”。
- 代码示例 : 03h_finetune_DENSENET201_flowers104.ipynb
和 03h_fromzero_DENSE‐NET121_flowers104.ipynb
。
1.1 DenseNet 性能对比
模型 | 参数(不含分类头) | ImageNet 准确率 | 104 花卉 F1 分数(微调) | 104 花卉 F1 分数(从头训练) |
---|---|---|---|---|
DenseNet201 | 18M | 77% | 95%(精度:96%,召回率:95%) | - |
DenseNet121 | 7M | 75% | - | 76%(精度:80%, |