正版购买
《DeepSeek原生应用与智能体开发实践 王晓华 人工智能技术丛书 详解DeepSeek原生应用与MCP Agent智能体开发 清华大学出版社》【摘要 书评 试读】- 京东图书
本书重点
解析DeepSeek在线调用、提示词、推理、Agent、工具调用、MCP、微调、蒸馏、后训练、RAG等技术栈
揭示KV Cache、MLA、MoE、MTP优化原理
实战美妆Agent、体重管理Agent、即时金融信息采集与分析、智能医疗问诊,以及基于A2A、MCP与RAG的跨境电商智能客服等18个案例
内容简介
本书围绕DeepSeek大模型应用开发展开,深度融合技术创新与工程实践,内容覆盖大模型应用开发(在线调用、提示词、推理、Agent、工具调用、MCP、微调、蒸馏、后训练、RAG)技术栈及其案例。书中原理与案例相融合,注重培养读者的大模型原生应用与智能体开发能力,并构建从理论到落地的完整知识体系。本书配套示例源码、PPT课件、配图PDF文件、读者微信交流群。
本书共分16章,内容包括大模型时代、DeepSeek开发环境配置与开放API使用、提示工程与DeepSeek提示库、思维链与DeepSeek推理模型、基于DeepSeek的Agent开发详解、DeepSeek的Function Calling与MCP应用实战、大模型驱动的即时金融信息采集与分析平台、KV Cache加持的推理加速、MLA注意力机制、MoE专家模型、MTP与多组件优化、大模型微调技术与应用、大模型蒸馏技术与应用、后训练算法GRPO详解与实战、基于后训练的智能医疗问诊实战,以及基于A2A、MCP与RAG的多Agent跨境电商智能客服实战。
适合读者
本书既适合DeepSeek开发初学者、大模型原生应用与智能体开发人员、模型优化与工程化工程师、大模型研究人员、行业AI解决方案提供商,也适合高等院校及高职高专院校学习人工智能大模型的学生。
本书看点
(1)本书包括18个应用案例,均具有借鉴价值,其中重点案例包括美妆Agent、体重管理Agent、即时金融信息采集与分析平台、智能医疗问诊系统、多Agent跨境电商智能客服系统,读者根据自己的需求稍微修改一下即可应用于生产实践。
(2)即时金融信息采集与分析平台、智能医疗问诊系统、多Agent跨境电商智能客服系统分别代表金融、医疗、电商行业的应用解决方案。特别是多Agent跨境电商智能客服系统,融合了A2A、MCP、RAG技术,其系统分析与代码实现过程的讲解就值书价了,有需要的读者大胆购买。
(3)本书还可以结合《DeepSeek大模型高性能核心技术与多模态融合开发》一书的案例对DeepSeek应用和多模态开发进行深入研究。
(4)本书围绕DeepSeek大模型应用开发展开,深度融合技术创新与工程实践,内容覆盖大模型应用开发(在线调用、提示词、推理、Agent、工具调用、MCP、微调、蒸馏、后训练、RAG)常用技术栈及其案例。
(5)本书原理与实战案例相融合,注重培养读者的大模型原生应用与智能体开发能力,并构建从理论到落地的完整知识体系。
(6)本书通过代码级详解与量化实验对比,将KV Cache、MLA注意力、MoE专家模型、MTP输出等前沿技术转化为可复现的工程能力,帮助读者深入理解大模型的技术逻辑。
(7)配套示例源码、数据文件、PPT课件、配图PDF文件、读者微信交流群。
配套的案例
- DeepSeek在线调用
- 带有系统提示的提示对话生成
- 基于思维链的DeepSeek推理模型
- 美妆GUI Agent
- 体重管理API Agent
- DeepSeek的Function Calling
- MCP客户端与MCP服务器搭建与使用
- 大模型驱动的即时金融信息采集与分析平台
- MLA注意力模型的完整实现
- 基于MoE模型的情感分类
- 基于图像识别模型V-MoE的训练与验证
- 多词元预测MTP模型的训练与推理
- 多模态DeepSeek大模型本地化部署与微调
- 基于在线DeepSeek大模型的离线蒸馏
- 基于物理信息神经网络PINN的在线蒸馏
- 基于GRPO的CartPole模型训练与演示
- 基于GRPO后训练的智能医疗问诊系统
- 基于A2A、MCP与RAG的跨境电商智能客服系统
作者简介
王晓华,高校计算机专业讲师,研究方向为云计算、大数据与人工智能,拥有多年人工智能项目开发经验。其著作包括《DeepSeek大模型高性能核心技术与多模态融合开发》《深入探索Mamba模型架构与应用》《PyTorch深度学习与计算机视觉实践》《PyTorch语音识别实战》《ChatGLM3大模型本地化部署、应用开发与微调》《从零开始大模型开发与微调:基于PyTorch与ChatGLM》《PyTorch 2.0深度学习从零开始学》《TensorFlow深度学习应用实践》《OpenCV+TensorFlow深度学习与计算机视觉实战》《TensorFlow语音识别实战》《TensorFlow 2.0卷积神经网络实战》《深度学习的数学原理与实现》。
前言
在人工智能技术爆炸式发展的当下,大语言模型(Large Language Model,LLM)已成为推动产业智能化转型的核心驱动力。随着DeepSeek-V3、DeepSeek-R1等突破性模型的发布,大模型在推理能力、训练效率和应用场景上实现了质的飞跃,但技术落地的复杂性也呈指数级增长。当前市场上虽不乏大模型理论教材,却鲜有系统性覆盖从开发环境搭建到行业垂直领域实战的完整指南,尤其在参数微调、推理加速、应用开发等核心技术环节存在实践断层。本书填补了这一空白,通过深度解构DeepSeek技术体系,为开发者构建从底层架构到上层应用的全链路能力。
本书注重工程与实践,融合了工业界实战经验与前沿研究成果。在内容组织上,既涵盖DeepSeek核心技术原理与代码实现,又通过即时金融信息采集与分析、智能医疗问诊、跨境电商智能客服等真实场景,展现大模型后训练算法GRPO、MCP协议及知识增强技术RAG的落地方法。相较于传统技术书籍,本书独创性地将理论推导、环境配置、模型优化与行业应用四大模块有机串联,形成“技术认知-工具使用-场景落地”的完整闭环,助力开发者快速跨越从技术理解到工程实现的鸿沟。
本书旨在为大模型开发者、研究者及AI从业者提供一套系统化的大模型技术实践指南,聚焦DeepSeek大模型的技术讲解与行业落地。通过从基础环境搭建到高阶算法优化的全流程解析,帮助读者掌握大模型开发的核心方法论。同时,本书还通过多个应用实战案例,揭示大模型技术如何与具体业务需求深度融合,助力读者构建端到端的智能化解决方案,提升技术在产业中的实际应用价值。
本书另一核心目标是填补大模型领域“理论到实践”的断层,通过代码级详解与量化实验对比,将KV Cache、MLA注意力、MoE模型、MTP输出等前沿技术转换为可复现的工程能力。无论是想要入门大语言模型开发的新手,还是寻求技术突破的资深工程师,均可通过本书深入理解DeepSeek生态的技术逻辑,并借助书中提供的工具代码与实战经验,快速实现模型优化、后训练及多场景部署,推动AI技术向生产级应用演进。
本书内容
本书以DeepSeek大模型技术体系为核心,构建了一条从核心原理到工程实践的完整学习路径。本书以“技术演进→核心机制→开发实战→行业落地”为主线,通过16章内容层层递进,既涵盖大模型底层技术的创新解析,又包含金融、医疗、电商等场景的实战案例,旨在为开发者提供一本“即学即用”的技术手册。
第1章大模型时代。开篇从大模型技术演进切入,梳理大语言模型发展简史,重点解析注意力机制、Scaling Law等里程碑技术,并通过DeepSeek-V3与DeepSeek-R1的技术突破,揭示“DeepSeek时刻”对AI产业格局的影响。本章帮助读者建立对大模型技术全貌的认知,明确学习目标与行业定位。
第2章DeepSeek开发环境配置与开放API使用。以实战为导向,手把手指导开发者搭建PyTorch环境、安装DeepSeek框架,并详细演示在线API调用流程(如特定格式约束、PyCharm集成)。通过DeepSeek在线调用示例,降低入门门槛,为后续章节内容的展开奠定基础。
第3、4章提示工程与思维链。深入讲解提示工程(Prompt Engineering)的核心方法论,结合DeepSeek提示库与思维链(Chain-of-Thought)技术,展示如何通过系统提示、角色扮演等技巧提升模型交互能力。实战案例涵盖对话生成、推理模型调用,帮助读者掌握模型输出的可控性优化。
第5、6章Agent的开发与DeepSeek的工具调用。从API Agent到GUI Agent,解析智能体(Agent)的核心机制,并通过美妆推荐、天气查询等案例展示工具调用(Function Calling)与MCP协议的集成方法。MCP本地服务端搭建、客户端连接等实战内容,助力读者构建可落地的自动化工具。
第7章金融信息采集与分析平台。以Crawl4AI网络爬虫工具为基础,结合DeepSeek的金融信息抽取能力,构建实时数据分析平台。本章通过链接解析、多角色人设分析等实战,演示大模型与行业数据结合的典型范式。
第8~11章DeepSeek核心技术解密。深度剖析DeepSeek蕴含的四大核心技术,包括KV Cache推理加速:通过缓存优化减少自回归模型计算量,实战对比资源消耗;MLA注意力机制:从低秩压缩到矩阵计算优化,揭示显存与速度的平衡之道;MoE模型:结合情感分类与图像分类,展示混合专家架构的负载均衡与门控机制;MTP与激活函数:解析多词元预测、SwiGLU等组件对生成效率的提升。
第12~14章模型优化技术。系统阐述大模型微调、蒸馏以及后训练技术。在模型微调领域,详细拆解了低秩自适应(LoRA)技术的数学原理与工程实践,并通过参数高效微调(PEFT)库实现多模态模型在垂直领域的快速适配。在模型蒸馏方向,讲解了基于DeepSeek在线API的蒸馏范式,通过教师-学生网络架构将DeepSeek的强大能力迁移至轻量级模型。此外,还以物理信息神经网络(PINN)为例,展示如何利用蒸馏技术求解偏微分方程,实现科学计算与AI的交叉创新。后训练相关章节则深度解析了广义奖励偏好优化(GRPO)算法,通过与近端策略优化(PPO)的对比讲解,揭示其在复杂决策场景中的优势,并完整通过对平衡车控制的训练过程直观地向读者讲解GRPO的算法实现。
第15章智能医疗问诊。本章转向行业场景的深度落地实践,构建了智能医疗垂直领域的完整解决方案。在医疗领域,突破性地将后训练技术与因果推理相结合,通过强化学习框架训练模型理解疾病演进规律,其输出的诊疗建议包含症状关联分析等结构化信息,达到医学诊疗的逻辑严密性。
第16章多Agent跨境电商智能客服。本章通过垂直领域的完整解决方案,针对跨境电商场景,创新设计A2A(Agent-to-Agent)协作架构,将智能客服系统解构为意图识别、知识整合、工具调用三个核心组件:基于Qwen3(这里只是把Qwen3当成实现一个交流客服Agent的工具,不影响读者掌握DeepSeek应用开发)基座模型构建多语种对话引擎,通过BM25算法与Conan嵌入向量(RAG技术)实现商品知识库的高精度检索,最终通过MCP工具调度协议,使客服系统能自主完成物流查询、售后处理等操作。特别在智能销售场景中,系统通过分析用户历史对话,动态推荐关联商品并生成个性化营销话术,使客单价(Per Customer Transaction,商场或超市每一个顾客平均购买商品的金额)提升,充分展现大模型在商业闭环中的价值创造能力。
本书特点
(1)系统性技术架构全解析:本书以大模型技术演进为脉络,从Transformers核心机制(如注意力机制、Scaling Law)切入,深度拆解DeepSeek原创技术(如KV Cache推理加速、MLA注意力机制、MoE模型),最终延伸至后训练算法(GRPO)与行业落地,构建“基础理论-核心技术-工程实践”的完整知识图谱,助力读者建立全局性技术视野。
(2)硬核代码与量化实验驱动:摒弃纯理论阐述,本书核心章节均配套PyTorch实战代码(如MLA注意力矩阵压缩、MTP多词元预测),并通过显存占用、推理速度等量化对比实验(如KV Cache缓存优化效果),直观展示技术优化的工程价值,帮助开发者“知其然,更知其所以然”。
(3)垂直行业场景深度赋能:突破“技术科普”局限,聚焦金融、医疗、电商三大高价值场景。金融领域:基于Crawl4AI构建实时股票分析平台,演示从爬虫到DeepSeek信息抽取的全流程;医疗场景:通过GRPO后训练实现带推理逻辑的智能问诊,设计奖励函数优化诊断准确性;跨境电商:基于Agent2Agent架构设计多语种客服系统,集成RAG知识注入与MCP工具调度,覆盖从问答到商品推荐的商业闭环。
(4)前沿算法与工程实践并重:既涵盖SFT、RLHF经典训练方法,又独家解析DeepSeek核心技术(如MLA低秩空间压缩、MoE负载均衡),更引入GRPO强化学习算法,帮助读者紧跟LLM技术 前沿。
(5)开发全代码覆盖:从开发环境搭建(Miniconda+PyTorch+PyCharm)到API调用(在线DeepSeek配置),再到微调框架(PEFT+LoRA)和部署优化(混合精度训练),提供端到端的代码实现,降低大模型落地门槛。
(6)多模态与Agent生态融合:突破单一NLP场景,演示基于ViT的图像分类(结合MoE)、语音情感分类(MLA优化)等跨模态任务,并通过GUI Agent、API Agent开发(如美妆推荐、体重管理、多Agent智能客服),展现大模型与物理世界交互的多样化路径。
(7)语言通俗与进阶内容分层:基础章节内容采用“概念-案例-代码”三段式讲解(如DeepSeek核心技术及其代码演示),高阶章节内容(如GRPO讲解)保留理论讲解,兼顾初学者入门与资深开发者进阶需求。
本书配套资源
本书配套示例源码、PPT课件、配图PDF文件、读者微信交流群,读者使用微信扫描右边的二维码即可获取。如果在阅读过程中发现问题或有任何建议,请联系下载资源中提供的相关电子邮箱或微信。
本书适合的读者
- DeepSeek应用开发初学者:本书从开发环境搭建(Python/PyTorch安装、DeepSeek框架配置)到API调用(在线DeepSeek使用、格式约束调用)再到DeepSeek应用案例,手把手地进行讲解,帮助零基础读者快速上手大模型开发全流程。
- DeepSeek原生应用与智能体开发人员:本书深度融合DeepSeek开发技术与实际应用案例,详细解析大模型原生应用与智能体开发方法,帮助开发人员提高大模型应用开发水平。
- 模型优化与工程化工程师:针对推理加速(KV Cache缓存优化)、显存压缩(MLA、MoE架构)、混合精度训练(MTP)等工程痛点,提供量化对比实验(如缓存开启前后推理速度提升)与落地代码,助力工程化能力提升。
- 行业AI解决方案提供商:聚焦金融(实时信息采集)、医疗(带推理逻辑的智能问诊)、跨境电商(多语种客服+商品推荐)三大垂直领域,提供从模型微调到架构设计的完整方案,适合需要快速落地行业应用的团队。
- 强化学习与后训练算法探索者:通过GRPO算法对比PPO的改进机制(如奖励建模、过程奖励优化),并结合平衡车控制、医疗问答等场景,展示后训练技术在逻辑推理与复杂决策中的突破,适合强化学习方向的研究者。
- 学习人工智能大模型相关课程的学生:本书既涵盖大模型基础理论(如注意力机制、Scaling Law),又包含前沿技术(如DeepSeek-V3/DeepSeek-R1技术解析),并通过本书16章的渐进式案例,支撑“理论-实验-项目”的完整教学闭环,可以作为高校大模型课程的教材。
作者与鸣谢
本书作者王晓华为高校计算机专业教师,担负数据挖掘、人工智能、数据结构等多项本科及研究生课程,研究方向为数据仓库与数据挖掘、人工智能、机器学习,在研和参研多项科研项目。
本书的顺利出版,离不开清华大学出版社老师们的帮助,在此表示感谢。
作 者
2025年5月
目录
第 1 章 大模型时代 1
1.1 大模型的诞生与发展 1
1.1.1 大语言模型发展简史与概念 2
1.1.2 大语言模型的生成策略 3
1.2 大语言模型发展的里程碑 4
1.2.1 注意力机制是大模型发展的里程碑 4
1.2.2 注意力机制的关键创新 5
1.2.3 注意力机制对语言建模的影响 7
1.2.4 大模型中的涌现与Scaling Law 10
1.2.5 大模型的训练方法SFT与RLHF 12
1.3 大语言模型发展的“DeepSeek时刻” 13
1.3.1 重塑世界AI格局的DeepSeek-V3 14
1.3.2 推理能力大飞跃的DeepSeek-R1 16
1.4 大模型的应用与展望 18
1.4.1 大模型的实际应用 18
1.4.2 大模型发展面临的展望 19
1.5 本章小结 20
第 2 章 DeepSeek开发环境配置与开放API使用 21
2.1 安装Python开发环境 21
2.1.1 Miniconda的下载与安装 21
2.1.2 PyCharm的下载与安装 24
2.2 安装DeepSeek开发框架 28
2.2.1 不同显卡与运行库的选择 28
2.2.2 PyTorch GPU版本的安装 28
2.2.3 测试PyTorch和CUDA安装信息 30
2.3 在线DeepSeek应用配置详解 31
2.3.1 DeepSeek简介与免费使用 32
2.3.2 带有特定格式的DeepSeek在线调用 33
2.3.3 带有约束的DeepSeek在线调用 35
2.3.4 将DeepSeek与PyCharm相连 37
2.4 本章小结 39
第 3 章 提示工程与DeepSeek提示库 40
3.1 提示工程Prompt详解 40
3.1.1 什么是提示工程 41
3.1.2 提示工程的关键要素与DeepSeek配置 41
3.1.3 DeepSeek提示工程化写作技巧与示例 43
3.1.4 系统、上下文和角色提示的进阶应用 44
3.2 DeepSeek中的提示库 46
3.2.1 DeepSeek中提示库介绍与基本使用 46
3.2.2 带有系统提示的提示对话生成 50
3.3 本章小结 51
第 4 章 思维链与DeepSeek推理模型 52
4.1 思维链详解 52
4.1.1 思维链应用场景 53
4.1.2 思维链的定义与分类 54
4.2 基于思维链的DeepSeek推理模型实战 55
4.2.1 通过Prompt提示构建思维链 56
4.2.2 DeepSeek-Reasoner推理模型实战 58
4.3 本章小结 60
第 5 章 基于DeepSeek的Agent开发详解 61
5.1 Agent开发概述 62
5.1.1 Agent的定义与核心机制 62
5.1.2 API Agent与GUI Agent 63
5.2 基于DeepSeek的美妆GUI Agent实践 65
5.2.1 GUI Agent库的安装与使用 66
5.2.2 使用DeepSeek自动化获取网页端天气信息 68
5.2.3 根据天气信息给出美妆建议 70
5.3 基于DeepSeek的体重管理API Agent实践 72
5.3.1 API Agent的注册与使用 73
5.3.2 实现卡路里计算与运动建议的功能 76
5.4 本章小结 77
第 6 章 DeepSeek的Function Calling与MCP应用实战 78
6.1 DeepSeek自带的Function Calling详解 78
6.1.1 Python使用工具的基本原理 79
6.1.2 DeepSeek工具使用详解 80
6.1.3 DeepSeek工具箱的使用 83
6.1.4 DeepSeek工具调用判定依据 89
6.2 给大模型插上翅膀的MCP协议详解 93
6.2.1 MCP协议目的、功能与架构详解 94
6.2.2 MCP实战1:本地工具服务端搭建 96
6.2.3 MCP实战2:本地客户端搭建与使用 98
6.3 在线MCP服务器的搭建与使用实战 102
6.3.1 在线MCP服务器搭建 102
6.3.2 在线MCP服务的连接和使用 103
6.4 本章小结 105
第 7 章 大模型驱动的即时金融信息采集 与分析平台 106
7.1 网络爬取工具Crawl4AI详解 106
7.1.1 大模型传递数据的方式 107
7.1.2 服务于大模型的Crawl4AI 107
7.1.3 Crawl4AI的安装与基本使用 108
7.2 DeepSeek驱动的即时金融信息采集与分析平台实战 109
7.2.1 使用Crawl4AI爬取金融网站 110
7.2.2 对链接内容进行解析 111
7.2.3 使用DeepSeek抽取和分析金融信息 113
7.2.4 实现DeepSeek驱动的即时金融信息采集与分析平台 115
7.2.5 将DeepSeek设置不同的人设并对金融信息进行分析 115
7.3 本章小结 116
第 8 章 DeepSeek核心技术1: KV Cache加持的推理加速 117
8.1 自回归生成模型中的资源计算 117
8.1.1 自回归模型的计算量 118
8.1.2 自回归模型的缓存优化 118
8.2 自回归生成模型中的推理加速详解 120
8.2.1 模型推理中的“贪心生成”与“采样生成” 121
8.2.2 模型推理过程中的冗余计算问题解析 122
8.2.3 初识模型推理中的KV Cache与代码实现 124
8.3 减少空间占用的自回归模型代码实现与详解 126
8.3.1 经典自回归模型详解 126
8.3.2 能够减少空间占用的自回归模型代码完整实现 128
8.3.3 缓存使用与传递过程详解 132
8.4 减少空间占用的生成模型实战与推理资源消耗量化对比 134
8.4.1 模型参数配置与训练数据的准备 134
8.4.2 带有缓存的生成模型训练 136
8.4.3 未运行缓存的生成模型推理资源量化展示 137
8.4.4 在缓存的生成模型推理资源量化展示 139
8.4.5 使用细精度修正模型输出 140
8.5 本章小结 140
第 9 章 DeepSeek核心技术2:MLA注意力机制 141
9.1 从推理角度详解MLA注意力模型与代码实现 142
9.1.1 大模型的推理过程 142
9.1.2 通用大模型的显存占用量化计算 143
9.1.3 手把手MLA注意力公式的总体推导 145
9.2 从缓存角度详解MLA注意力模型与代码实现 146
9.2.1 优化的MLA模型实现1:压缩低秩空间 147
9.2.2 优化的MLA模型实现2:核心注意力矩阵计算 148
9.2.3 优化的MLA模型实现3:对显存KV Cache部分的压缩 149
9.2.4 带有缓存的MLA注意力模型完整实现 149
9.3 MLA注意力模型的完整补充讲解 152
9.3.1 调参、记忆力以及矩阵计算优化 152
9.3.2 MLA、GQA以及MQA差异详解 156
9.4 本章小结 157
第 10 章 DeepSeek核心技术3:MoE模型 158
10.1 MoE架构 158
10.1.1 MoE模型的基本结构 159
10.1.2 MoE模型中的“专家”与“调控”代码实现 160
10.1.3 使用MoE模型还是经典的前馈层 163
10.2 基于MoE模型的情感分类实战 164
10.2.1 基于MoE模型的评论情感分类实战 164
10.2.2 MoE模型中负载平衡的实现 167
10.3 加载MoE架构的注意力模型 169
10.3.1 注意力机制中的前馈层不足 170
10.3.2 MoE可作为前馈层的替代 173
10.3.3 结合MoE的注意力机制 175
10.4 基于MoE与自注意力的图像分类 175
10.4.1 基于注意力机制的ViT模型 176
10.4.2 Patch Embedding与Position Embedding 177
10.4.3 可视化的Vision-MoE的详解 179
10.4.4 V-MoE模型的实现 182
10.4.5 基于图像识别模型V-MoE的训练与验证 182
10.4.6 使用已有的库实现MoE 184
10.5 本章小结 185
第 11 章 DeepSeek核心技术4:MTP与多组件优化 186
11.1 深度学习中的精度计算详解与实战 186
11.1.1 深度学习中的精度详解 187
11.1.2 不同精度的相互转换与混合精度 188
11.1.3 PyTorch中混合精度详解 191
11.1.4 使用混合精度完成模型训练与预测 192
11.2 生成模型的多词元预测 196
11.2.1 MTP的经典架构设计与损失函数 196
11.2.2 DeepSeek中MTP架构 198
11.2.3 多词元预测模型的完整实现 199
11.2.4 多词元预测模型的训练与推理 200
11.3 自回归模型中的单分类与多分类激活函数 203
11.3.1 生成模型中的单分类激活函数 203
11.3.2 生成模型中的多分类激活函数 207
11.4 DeepSeek中的激活函数SwiGLU 209
11.4.1 SwiGLU激活函数详解 209
11.4.2 SwiGLU的PyTorch实现 210
11.4.3 结合经典缩放的SwiGLU 211
11.5 本章小结 212
第 12 章 大模型微调技术与应用 213
12.1 什么是模型微调 213
12.1.1 大模型微调的作用 213
12.1.2 大模型微调技术有哪些 214
12.1.3 参数高效微调详解 215
12.2 大模型微调方法LoRA详解 216
12.2.1 LoRA微调的优势 216
12.2.2 LoRA基本公式推导 217
12.2.3 PyTorch获取内部参数的方法 218
12.3 多模态DeepSeek大模型本地化部署与微调实战 219
12.3.1 多模态DeepSeek大模型的本地化部署 219
12.3.2 微调的目的:让生成的结果更聚焦于任务目标 221
12.3.3 适配DeepSeek微调的辅助库PEFT详解 224
12.3.4 基于本地化部署的DeepSeek微调实战 226
12.4 本章小结 232
第 13 章 大模型蒸馏技术与应用 233
13.1 什么是模型蒸馏 233
13.1.1 模型蒸馏的核心原理与应用价值 234
13.1.2 在线与离线大模型蒸馏的实施方法 234
13.2 基于在线DeepSeek大模型的离线蒸馏 235
13.2.1 模型蒸馏的前置准备 235
13.2.2 通过在线DeekSeek API进行蒸馏处理 236
13.3 基于物理信息神经网络的在线蒸馏 238
13.3.1 在线蒸馏的损失函数与经典微分方程的求解方法 239
13.3.2 基于PINN蒸馏求解微分方程的实战 240
13.4 本章小结 245
第 14 章 后训练算法GRPO详解与实战 246
14.1 基于GRPO的平衡车自动控制实战 247
14.1.1 CartPole强化学习环境设置 247
14.1.2 基于GRPO的CartPole模型训练 248
14.1.3 基于GRPO后的CartPole模型演示 252
14.2 GRPO算法详解 255
14.2.1 从PPO对比GRPO 256
14.2.2 GRPO核心原理与案例演示 258
14.2.3 GRPO原理的补充问答 259
14.2.4 平衡车中的GRPO控制详解 261
14.3 本章小结 263
第 15 章 基于GRPO 后训练的智能医疗问诊实战 265
15.1 模型的后训练与逻辑能力 265
15.1.1 大模型的后训练概念与核心目标 266
15.1.2 结果奖励与过程奖励:奖励建模详解 267
15.2 带推理的智能医疗问诊实战 269
15.2.1 推理医疗数据集的准备与处理 269
15.2.2 奖励函数的完整实现 271
15.2.3 基于GRPO后训练的智能医疗问诊实战 273
15.2.4 智能医疗问诊模型的推理展示 276
15.3 本章小结 277
第 16 章 基于A2A、MCP与RAG的跨境 电商智能客服实战 278
16.1 基于A2A跨境电商智能客服基本架构设计 279
16.1.1 DTC模式的崛起与智能客服的新要求 279
16.1.2 跨境电商智能客服架构设计 280
16.1.3 用于复杂任务分配、解决与汇总的A2A架构 281
16.2 搭建具备商业问答功能的交流客服Agent 282
16.2.1 基于Qwen3的多语种智能客服基座模型简介 283
16.2.2 真实客服数据集介绍与使用详解 284
16.2.3 使用LoRA微调基座模型 285
16.2.4 使用微调后的智能客服基座模型完成推理 289
16.2.5 原生Qwen3多语种支持与跨境电商智能客服语言设置 290
16.3 给交流客服Agent注入垂直领域知识 292
16.3.1 给客服大模型直接添加知识的方法 293
16.3.2 更高精度的RAG详解与使用示例 295
16.3.3 基于BM25算法的RAG实战 296
16.3.4 基于Conan Embedding向量排序的RAG实战 300
16.3.5 对于智能客服模型垂直领域知识注入的补充讲解 305
16.4 搭建基于DeepSeek的调度Agent 308
16.4.1 使用MCP构建适配智能客服的工具集 308
16.4.2 基于在线DeepSeek的客户意图识别与工具调度Agent 312
16.5 水到渠成的A2A架构跨境电商智能客服实现 316
16.5.1 将交流客服Agent添加到客服工具集 316
16.5.2 客服化身销售:将智能客服与商品推荐相结合 318
16.5.3 A2A与MCP的结合与展望 321
16.6 本章小结 323