基于知识概率地图的隐蔽路径规划
在计算机图形学和机器人领域,路径规划是一个重要的研究方向。特别是在需要考虑敌人位置和可见性的场景中,如何找到一条隐蔽且安全的路径是一个具有挑战性的问题。本文将介绍一种基于知识概率地图的隐蔽路径规划方法,该方法利用代理对过去敌人位置的了解来计算概率地图,并在计算可见性地图时使用该概率地图。
1. 可见性计算相关算法
在可见性计算方面,有多种算法可供选择。2000 年,Cohen - Or 等人对用于漫游应用的可见性算法进行了调查,主要关注不同的遮挡剔除算法,虽然调查重点是加速渲染过程,但也描述了许多关于一般可见性计算的有趣算法。不过,大多数算法是基于多边形的,而非离散(基于网格)的。Bittner 等人的类似调查也主要涉及障碍物的多边形表示,而非离散表示。
等视域计算可以根据观察者点和障碍物几何形状确定可见空间。等视域场通过计算场景中每个点的等视域多边形的面积(或其他度量)来计算。虽然为了简单起见,等视域计算通常在二维中进行,但 Van Bilsen 提出了在三维中使用等视域进行可见性计算的方法。等视域通常被用作城市/建筑设计中的空间分析工具,并且存在用于二维等视域计算的开源库。然而,对于实时应用,当几何形状复杂度增加时,等视域计算会出现速度问题。
使用障碍物的离散表示而非连续表示会产生误差。但 Van Bilsen 等人表明,在使用平均距离度量计算可见性时,使用离散表示而非精确多边形表示的平均误差约为 11%。对于需要高精度的城市设计来说,这是一个问题,但对于虚拟角色而言,这种误差是可以接受的。
2. 分层路径规划
本文主要关注与路径规划相关的成本函数,因为在这部分会用到可见性信息。我