无线网状网络中的隐私保护、认证、信任与隐私提供
1. 无线网状网络隐私保护
1.1 流量曲线分析
在无线网状网络(WMN)中,流量隐私保护是一个重要问题。首先来看流量曲线,以节点 1 为目的地时,从测量的流量曲线可知,节点 1 自身观测到的流量总是最大的。这是因为任何节点都能观测到自身的全部流量,而其他节点只能观测到其部分流量。
同时,节点 1 的勾结流量信息(用方块表示)比任何单个观测者(如节点 15 或 28)的信息都要多。不过,在某些区间,如接近区间 100 和 150 时,节点 28 观测到的流量超过节点 15,提升了对节点 1 流量活动的综合了解。
1.2 勾结流量互信息:单对观测者
接下来分析勾结流量互信息。涉及到勾结流量互信息(I (y, z; x))、单个观测者互信息(I (y; x) 和 I (z; x))、原始流量熵(H(x))、分别观测到的流量熵(H(y, x) 和 H(z, x))以及联合熵(H(y, z, x))。它们之间存在以下关系:
1. H(y, x), H(z, x) ≤ H(y, z, x) ≤ H(x);
2. I (y, x), I (z, x) ≤ I (y, z, x) ≤ H(x);
3. I (y, x) ≤ H(y, x) ≤ H(x);
4. I (z, x) ≤ H(z, x) ≤ H(x)。
通过模拟结果验证,发现这些关系是成立的。这表明对流量活动的建模不仅能刻画流量模式随时间的波动,还能经受住勾结问题的考验。例如,图中重叠的曲线表明节点 23 没有观测到节点 1 的任何流量,这可能是因为它们位于网络的相对两侧。 </