包子凑数

标题:包子凑数

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。

输入
----
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)  

输出
----
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。

例如,
输入:
2  
4  
5   

程序应该输出:
6  

再例如,
输入:
2  
4  
6    

程序应该输出:
INF

样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。  
对于样例2,所有奇数都凑不出来,所以有无限多个。  

资源约定:
峰值内存消耗(含虚拟机) < 256M

CPU消耗  < 1000ms

做法:这是扩展欧几里德变形的,有个定理。如果满足所有数的最大公约数不为1则有无穷个,否则都是有限个。然后利用完全背包就可以统计了。

#include<iostream>
using namespace std;
int num[101];
bool book[10010];
int gcd(int a,int b) {//欧几里得算法 ,最后得到ab的最大公约数 
	if(b==0)
		return a;
	else
		return gcd(b,a%b);
}

int main() {
	int N,g;
	cin>>N;
	for(int i=0; i<N; i++) {
		cin>>num[i];
	}
	g=num[0];
	for(int i=0; i<N; i++) {
		g=gcd(g,num[i]);//得到所有数的最大公约数 
	}
	if(g!=1)//如果不为1则说明有无数个数构不成 
		cout<<"INF";
	else {
		book[0]=true;
		for(int i=0; i<N; i++) {
			for(int j=0; j+num[i]<10010; j++) {
				if(book[j])
					book[j+num[i]]=true;//把所有能凑成的数设置为true 
			}
		}
		int count=0;
		for(int i=0; i<10010; i++) {
			if(book[i]==false) {
				count++;
			}
		}
		cout<<count;
	}
	return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值