本文包含以下内容:
一、系统稳定性概念
二、系统稳定性判断
一、系统稳定性概念
系统加入扰动后偏离了原来的状态,当把干扰去掉后,系统如果能恢复到原来的状态,则说明系统稳定。
二、系统稳定性判断
脉冲信号可以视为典型的扰动信号,假设,系统的脉冲响应为k(t),若
limt→+∞k(t)=0
\lim_{t \to +\infty}k(t)= 0
t→+∞limk(t)=0
则系统稳定。
将系统的传递函数写成部分分式展开的形式:
K(s)=A1s−a1+A2s−a2+A3s−a3+...+Ans−an
K(s)=\frac{A1}{s-a1}+\frac{A2}{s-a2}+\frac{A3}{s-a3}+...+\frac{An}{s-an}
K(s)=s−a1A1+s−a2A2+s−a3A3+...+s−anAn
对上式进行拉氏反变换可得:
k(t)=A1ea1*t + A2ea2*t +A3ea3*t +…+Anean*t
由系统稳定条件我们可以得出,只要an都小于0则,
limt→+∞k(t)=0
\lim_{t \to +\infty}k(t)= 0
t→+∞limk(t)=0
也就是说,只要系统得特征方程的根都小于0,即系统的极点都在左半平面,则系统稳定。
通过matlab的roots()函数很容易可以求出特征方程的根。
举例,有如下传递函数:
G(s)=10s2+2∗s+10
G(s)=\frac{10}{s^2+2*s+10}
G(s)=s2+2∗s+1010
用roots()函数判定该系统稳定性。
在matlab中输入如下代码,可以求出系统的特征根。
den = [1 2 10];
roots(den)
ans =
-1.0000 + 3.0000i
-1.0000 - 3.0000i