基于迁移学习的古币图像自动识别
1. 引言
近年来,深度学习(DL)在计算机视觉(CV)的各个领域取得了显著成就,特别是在图像分类、语义分割和目标识别方面。然而,在文化遗产(CH)领域,图像呈现出复杂的图案和有限的数据量,这给机器学习(ML)和计算机视觉(CV)带来了挑战。古币鉴定就是这样一个具有挑战性的任务,传统上由专业的钱币学家通过视觉识别来完成,这一过程不仅困难、耗时,还需要丰富的经验,且不同人可能有不同的观点。
为了解决这些问题,我们专注于利用高精度的DL模型进行钱币学证据的模式检测和分析,以提高对形态复杂的古币图案的映射和理解精度。由于训练DL模型的样本数量有限,我们采用网络爬虫方法创建了所需的数据集,并开发了一个易于使用的基于Web的工具(AnCoins),供专家和普通公众使用。
2. 背景和相关工作
硬币作为历史和考古证据的价值一直备受关注。硬币的图案、肖像和铭文等特征有助于建立历史联系、确定特定的铸造权,并增进对过去社会的理解。在过去的十年中,许多研究致力于利用机器学习和计算机视觉方法进行古币鉴定。以下是一些相关工作的总结:
| 年份 | 研究人员 | 方法 | 数据集 | 结果 |
| ---- | ---- | ---- | ---- | ---- |
| 2008 | Kampel和Zaharieva | 利用SIFT、Fast Approximated SIFT和PCA - SIFT算法匹配不同图像的局部特征 | 350张三种不同类型硬币的图像 | - |
| 2010 | Arandjelovic | 比较hSIFT单词、LBR和LDB核特征 | 65类共2236张250×250像素的罗马帝