利用简单功耗分析攻击非平衡RSA - CRT
1. 引言
自1996年Kocher提出计时攻击以来,许多论文都在研究各种侧信道攻击及其潜在的对策。侧信道攻击可以提取操作数据的信息,用于恢复秘密数据,主要包括计时攻击、简单功耗分析(SPA)和差分功耗分析(DPA)。尽管已经提出了许多对策,但在实现算法时解决所有弱点仍然是一项艰巨的任务,功耗攻击尤其难以防范。
在公钥环境中,许多研究聚焦于密码系统对侧信道攻击的安全性,特别是RSA签名和加密方案。RSA在智能卡等计算受限设备上的高效实现,常结合中国剩余定理(CRT)和Garner算法,以加快模幂运算。2001年,Novak提出利用简单功耗分析Garner算法执行过程中的信息来恢复RSA模数的因子分解,但该方法需要选择消息,在RSA签名场景中,由于标准化填充方案,无法进行自适应消息选择。本文在此基础上,利用已知消息进行攻击,适用于任何填充方案的RSA签名方案,不过需要模数的素因子比特长度有小差异(约10位)。
2. RSA签名方案
- 基本原理 :设$N = pq$为$n$位RSA模数,签名者的公钥为$(N, e)$,私钥为$(p, q, d)$,满足$e · d = 1 \mod (p - 1)(q - 1)$。消息$M$签名时,先通过编码方案(如PKCS#1)转换为$m \in Z_N$,然后计算$S = m^d \mod N$作为签名。验证者计算$m$并检查$m = S^e \mod N$是否成立。
- CRT优化 :智能卡实现RSA常使用CRT加速计算,结合Garner算法从$S \mod p$和$S