前言
本文所用数据集来自西瓜书P202西瓜数据集4.0,文章末尾会附上源码和数据集。
一、简介及算法步骤
1.简介
K均值算法(K-Means Algorithm)是一种常用的聚类分析方法,用于将数据集划分为预定数量的簇(clusters)。其基本思想是通过迭代的方式,最小化簇内样本之间的距离,以实现相似数据的归类。
2.算法步骤
初始化:选择 K个初始聚类中心(centroids),通常是在数据集中随机选择 K 个数据点。
分配步骤:对每个数据点,计算它到每个聚类中心的距离(通常使用欧几里得距离),然后将该数据点分配到最近的聚类中心所在的簇。
更新步骤:计算每个簇的新聚类中心,方法是对簇中所有数据点的坐标求平均。
重复:重复进行“分配步骤”和“更新步骤”,直到聚类中心不再变化(或者变化非常小),或者达到预设的迭代次数。
3.算法流程示意图
二、代码实现
1.算法详细
选择K值:确定要分成的簇的数量K。这个选择可能依赖于先验知识或通过评估不同K值下的聚类效果来确定,本次实验选择k =2、3、4。初始化中心点:随机选择K个数据点作为初始中心,本次实验选择三组不同的初始点来观察模型性能。
np.random.seed(seed) # 输入随机数种子,以便观察不同初始化中心带来的差距
centres