DeepSeek-Ollama实现本地化无烦恼

DeepSeek 很火爆,网页总会出现“系统繁忙”,除了去不同的平台入口寻求额外帮助,还可以本地化部署,独享性能。

我们需要用到:

  • Ollama: 启动并运行大型语言模型。star 125K
  • Open WebUI: 一个可扩展、功能丰富且用户友好的自托管 AI 平台,旨在完全离线运行。它支持各种 LLM 运行器,如 Ollama 和 OpenAI 兼容的 API,并内置了 RAG 推理引擎,使其成为强大的 AI 部署解决方案。star 72.4k
  • DeepSeek r1: 在数学、代码和推理任务方面的性能可与 OpenAI-o1 相媲美。star 72.3k
  • DeepSeek v3: 这是一个强大的专家混合 (MoE) 语言模型,总共有 671B 个参数,每个令牌激活了 37B。star 82.8k

目录概览:

如何选择 deepseek-r1和deepseek-v3

  1. 模型架构

    DeepSeek-R1:

  • 可能是早期版本或基础版本。

  • 使用较为传统的神经网络架构(如 RNN、LSTM 或早期的 Transformer)。

  • 在性能和功能上可能较为基础。

    DeepSeek-V3:

  • 可能是最新版本或优化版本。

  • 使用更先进的架构(如 Transformer 的变体、BERT、GPT 等)。

  • 在性能、准确性和功能上有显著提升。

  1. 训练数据

    DeepSeek-R1:

  • 可能使用了较小规模或较早期的训练数据集。

  • 数据覆盖范围可能有限。

    DeepSeek-V3:

  • 使用了更大规模、更多样化的训练数据。

  • 数据更新至最新,覆盖更多领域和语言。

  1. 性能优化

    DeepSeek-R1:

  • 可能在推理速度、内存占用等方面未经过深度优化。

  • 适合轻量级任务或资源有限的环境。

    DeepSeek-V3:

  • 经过深度优化,推理速度更快,资源占用更低。

  • 支持更复杂的任务和更大的规模。

  1. 功能特性

    DeepSeek-R1:

  • 功能较为基础,可能仅支持简单的文本生成、分类等任务。

  • 缺乏对多模态(如图像、音频)的支持。

    DeepSeek-V3:

  • 功能更丰富,支持多模态任务(如文本生成、图像理解、语音识别等)。

  • 支持更复杂的交互逻辑(如上下文管理、多轮对话)。

  1. 应用场景

    DeepSeek-R1:

  • 适合简单的应用场景,如基础聊天机器人、文本分类等。

  • 适合资源有限的环境(如嵌入式设备、移动端)。

    DeepSeek-V3:

  • 适合复杂的应用场景,如智能客服、内容创作、多模态交互等。

  • 适合高性能需求的环境(如云端服务、大规模部署)。

如何部署

下载安装 Ollama

快速安装Ollama
  1. visit https://ollama.com/download

  2. Download for MacOS(Requires macOS 11 Big Sur or later)
    download and install it.

  3. after finished that, do it to check the version:

$ ollama -v
Warning: could not connect to a running Ollama instance
Warning: client version is 0.5.7
运行指令
  1. 以服务的形式启动一个后台服务,指定具体的端口,同时也可以指定具体加载的模型
ollama serve --port 12345

2025/02/11 16:51:50 routes.go:1187: INFO server config env="map[HTTPS_PROXY: HTTP_PROXY: NO_PROXY: OLLAMA_DEBUG:false OLLAMA_FLASH_ATTENTION:false OLLAMA_GPU_OVERHEAD:0 OLLAMA_HOST:http://127.0.0.1:11434 OLLAMA_KEEP_ALIVE:5m0s OLLAMA_KV_CACHE_TYPE: OLLAMA_LLM_LIBRARY: OLLAMA_LOAD_TIMEOUT:5m0s OLLAMA_MAX_LOADED_MODELS:0 OLLAMA_MAX_QUEUE:512 OLLAMA_MODELS:/Users/chenzy/.ollama/models OLLAMA_MULTIUSER_CACHE:false OLLAMA_NOHISTORY:false OLLAMA_NOPRUNE:false OLLAMA_NUM_PARALLEL:0 OLLAMA_ORIGINS:[http://localhost https://localhost http://localhost:* https://localhost:* http://127.0.0.1 https://127.0.0.1 http://127.0.0.1:* https://127.0.0.1:* http://0.0.0.0 https://0.0.0.0 http://0.0.0.0:* https://0.0.0.0:* app://* file://* tauri://* vscode-webview://*] OLLAMA_SCHED_SPREAD:false http_proxy: https_proxy: no_proxy:]"
time=2025-02-11T16:51:50.635+08:00 level=INFO source=images.go:432 msg="total blobs: 5"
time=2025-02-11T16:51:50.636+08:00 level=INFO source=images.go:439 msg="total unused blobs removed: 0"
[GIN-debug] [WARNING] Creating an Engine instance with the Logger and Recovery middleware already attached.

[GIN-debug] [WARNING] Running in "debug" mode. Switch to "release" mode in production.
 - using env:	export GIN_MODE=release
 - using code:	gin.SetMode(gin.ReleaseMode)

[GIN-debug] POST   /api/pull                 --> github.com/ollama/ollama/server.(*Server).PullHandler-fm (5 handlers)
[GIN-debug] POST   /api/generate             --> github.com/ollama/ollama/server.(*Server).GenerateHandler-fm (5 handlers)
[GIN-debug] POST   /api/chat                 --> github.com/ollama/ollama/server.(*Server).ChatHandler-fm (5 handlers)
[GIN-debug] POST   /api/embed                --> github.com/ollama/ollama/server.(*Server).EmbedHandler-fm (5 handlers)
[GIN-debug] POST   /api/embeddings           --> github.com/ollama/ollama/server.(*Server).EmbeddingsHandler-fm (5 handlers)
[GIN-debug] POST   /api/create               --> github.com/ollama/ollama/server.(*Server).CreateHandler-fm (5 handlers)
[GIN-debug] POST   /api/push                 --> github.com/ollama/ollama/server.(*Server).PushHandler-fm (5 handlers)
[GIN-debug] POST   /api/copy                 --> github.com/ollama/ollama/server.(*Server).CopyHandler-fm (5 handlers)
[GIN-debug] DELETE /api/delete               --> github.com/ollama/ollama/server.(*Server).DeleteHandler-fm (5 handlers)
[GIN-debug] POST   /api/show                 --> github.com/ollama/ollama/server.(*Server).ShowHandler-fm (5 handlers)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

c_zyer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值