mmdetection训练faster-rcnn 和cascade mask-rcnn

1. 训练faster-rcnn:

2. 训练cascade mask-rcnn:

修改 cascade_mask_rcnn_r50_fpn.py文件中所有的num_classes为你要训练的数据集的类别(不包括背景)

 

 

 然后在configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py中添加数据集的设置

_base_ = [
    '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
    '../_base_/datasets/coco_instance.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]


# 修改数据集相关设置
dataset_type = 'COCODataset'
classes = ('crack', 'hole',)
data = dict(
    train=dict(
        img_prefix='E:/jt/mmdetection/data/coco/defect_dataset/train/',
        classes=classes,
        ann_file='E:/jt/mmdetection/data/coco/defect_dataset/train/annotations_coco.json'),
    val=dict
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值