锋哥原创的Scikit-learn Python机器学习视频教程:
2026版 Scikit-learn Python机器学习 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili
课程介绍
本课程主要讲解基于Scikit-learn的Python机器学习知识,包括机器学习概述,特征工程(数据集,特征抽取,特征预处理,特征降维等),分类算法(K-临近算法,朴素贝叶斯算法,决策树等),回归与聚类算法(线性回归,欠拟合,逻辑回归与二分类,K-means算法)等。
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)
适用于移除方差低于阈值的特征,这些特征通常包含很少的信息。
VarianceThreshold 是机器学习中一个简单但实用的特征选择方法,它通过移除低方差特征来简化数据集。VarianceThreshold
的主要参数是 threshold
,它决定了特征被保留与否的方差门槛。
参数名 (Parameter) | 说明 (Description) | 默认值 (Default) |
---|---|---|
threshold | 一个浮点数 (float)。指定要保留特征的最低方差阈值。训练集中方差低于此阈值的特征将被移除。 | 0.0 |
我们来看一个示例:
from sklearn.feature_selection import VarianceThreshold
from sklearn.datasets import load_iris
# 加载示例数据
X, y = load_iris(return_X_y=True)
# 设置阈值,移除方差低于0.8的特征
selector = VarianceThreshold(threshold=0.8)
X_new = selector.fit_transform(X)
print(f"原始特征数: {X.shape[1]}")
print(f"筛选后特征数: {X_new.shape[1]}")
运行结果:
原始特征数: 4
筛选后特征数: 1
数学知识:方差
方差公式是一个数学公式,是数学统计学中的重要公式,应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定
若x1,x2,x3......xn的平均数为M,则方差公式可表示为: