一、题目背景与核心目标
在汽车空气动力学领域,精确预测风阻对提升车辆性能和效率至关重要。传统方法依赖耗时的流体力学仿真(如 N-S 方程求解),难以满足设计迭代的实时性需求。深度学习,尤其是算子学习范式,为 “几何形状→物理场(压力、阻力)” 的非线性映射提供了高效解决方案。本题要求构建具有强泛化能力的神经网络模型,实现对任意三维车辆几何的风阻快速预测,突破传统模型在未知几何拓扑下的鲁棒性瓶颈。
二、核心任务与关键挑战
-
任务本质:
- 输入:三维车辆表面几何信息(网格节点坐标)。
- 输出:表面压力场(用于计算阻力系数 Cd)。
- 核心:通过算子学习(即 “函数到函数” 的映射),训练模型从几何特征到物理场的端到端预测能力,确保对未见过的几何形状具有高精度泛化性。
-
关键挑战:
- 泛化性不足:现有模型对训练集外的几何特征鲁棒性差,需设计适应任意拓扑结构的网络架构(如神经算子、几何深度学习模型)。
- 数据与模型适配:处理非结构化网格数据(节点坐标、压力向量),统一不同样本的输入维度,构建高效数据加载流程。
- 物理约束融合:高雷诺数湍流场景下,需结合 N-S 方程物理先验(如不可压缩性、动量守恒),提升模型物理一致性。
- 性能优化:在低计算复杂度和显存占用下,满足压力场预测 L2 相对误差 < 0.4、Cd 误差 < 80 counts 的精度要求。
三、解决框架与技术路线
整体流程围绕 “数据处理→模型构建→实验优化→理论分析” 展开,结合飞桨深度学习框架实现工程落地:
1. 数据处理与特征工程(问题 2)
- 输入输出定义:
- 输入:车辆表面节点坐标(几何特征),归一化至统一范围(如 [-1, 1])。
- 输出:节点压力值(物理标签),结合数据归一化信息预处理。
- 数据加载:
- 使用飞桨
DataLoader
实现多进程异步加载,处理可变长度网格数据(如稀疏采样固定节点数、补零填充),提升数据吞吐量。
- 使用飞桨
2. 算子神经网络构建(问题 3)
- 模型选择:
- 神经算子类模型:如 DeepONet(处理函数映射,分几何编码和物理解码分支)、Fourier Neural Operator(捕捉空间频率特征,适合长距离依赖)、PINN(融入 N-S 方程残差损失,增强物理约束)。
- 架构设计:针对 3D 表面数据,采用点云处理架构(如 PointNet、图神经网络)或网格参数化方法,将几何坐标映射为压力场。
- 损失函数:
- 基础 L2 损失(MSE)优化压力预测精度,结合 Cd 显式计算(压力积分)优化最终目标指标,若使用 PINN 则加入微分方程残差项。
3. 实验分析与性能优化(问题 4)
- 变量控制实验:
- 数据端:测试稀疏采样率(10%/50%/100%)、训练集规模(100/200/450 样本)对精度的影响,验证数据稀疏性和规模的鲁棒性。
- 模型端:调整网络层数、参数量、激活函数,分析计算复杂度(FLOPs)、显存占用(GB)与精度的权衡,寻找最优超参数组合。
- 精度达标策略:
- 归一化策略(坐标 / 压力标准化)、正则化(Dropout / 权重衰减)防止过拟合,梯度裁剪避免训练不稳定。
4. 理论关联与证明(问题 1、5)
- 问题 1:通过数值优化(牛顿法 / 梯度下降)求解单变量函数极小化问题,理解梯度优化在算子学习中的基础作用。
- 问题 5:证明 Transformer 注意力机制是神经算子层的特例,建立深度学习经典模块与算子学习理论的联系,提升方法的理论完备性。
关注我,后续会持续更新解题思路和代码,以及成品论文