基于伊辛模型的乘积型消息传递框架扩展
在计算机科学领域,布尔可满足性问题(SAT)一直是一个核心研究方向。为了解决 SAT 问题,消息传递(MP)算法和冲突驱动的子句学习(CDCL)等方法被广泛应用。本文将探讨如何将伊辛模型的概念引入到乘积型消息传递框架(PMPF)中,以扩展其功能并提高 MP 算法在 SAT 求解器中的性能。
1. 符号细节与定义
在深入探讨之前,我们需要明确一些基本的符号和定义:
- 布尔变量与文字 :设 (V = {v_1, \ldots, v_n}) 是 (n) 个布尔变量的集合,(L = {v, \overline{v}|v \in V}) 是文字的集合。
- 子句与 CNF 公式 :子句 (c) 是文字的集合,解释为析取;CNF 公式 (F) 是 (m) 个子句的集合,解释为合取。
- 子句属性 :(\vert c\vert) 表示子句 (c) 的大小;单位子句是指大小为 1 的子句;重言子句是指包含互补文字的子句;纯文字是指在 (F) 中不存在其互补文字的文字。
- k - CNF 公式 :如果 (F) 中所有子句的最大大小为 (k),则称 (F) 为 (k) - CNF 公式。
- 赋值与可满足性 :赋值 (\alpha : V \to {0, 1}) 称为 (F) 的满足赋值(或解),如果 (\alpha(F)) 评估为真;如果赋值对 (V) 中的所有变量都进行了赋值,则称为全赋值;如果 (F) 至少有一个满足赋值,则称 (F)