背景
RSA公开密钥密码体制是一种使用不同的加密密钥与解密密钥,“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制。
在公开密钥密码体制中,加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥)SK是需要保密的。加密算法E和解密算法D也都是公开的。虽然解密密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK。
正是基于这种理论,1978年出现了著名的RSA算法,它通常是先生成一对RSA密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。这就使加密的计算量很大。为减少计算量,在传送信息时,常采用传统加密方法与公开密钥加密方法相结合的方式,即信息采用改进的DES或IDEA对话密钥加密,然后使用RSA密钥加密对话密钥和信息摘要。对方收到信息后,用不同的密钥解密并可核对信息摘要。
RSA是被研究得最广泛的公钥算法,从提出到现在已近三十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。1983年麻省理工学院在美国为RSA算法申请了专利。
RSA允许你选择公钥的大小。512位的密钥被视为不安全的;768位的密钥不用担心受到除了国家安全管理(NSA)外的其他事物的危害;1024位的密钥几乎是安全的。RSA在一些主要产品内部都有嵌入,像 Windows、网景 Navigator、 Quicken和 Lotus Notes。
算法原理
RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。
算法描述
- 任意选取两个不同的大素数ppp和qqq计算乘积n=pqn=pqn=pq, φ(n)=(p−1)(q−1)\varphi(n)=(p-1)(q-1)φ(n)=(p−1)(q−1);
- 任意选取一个大整数eee,满足gcd(e,φ(n))=1\gcd(e,\varphi(n))=1gcd(e,φ(n))=1,整数eee用做加密钥(注意:eee的选取是很容易的,例如,所有大于ppp和qqq的素数都可用);
- 确定的解密钥ddd,满足(de) mod φ(n)=1(de)\ mod\ \varphi(n)=1(de) mod φ(n)=1,即de=kφ(n)+1de=k\varphi(n)+1de=kφ(n)+1,其中kkk为正整数;所以,若知道eee和φ(n)\varphi(n)φ(n),则很容易计算出ddd;
- 公开整数nnn和eee,秘密保存ddd;
- 将明文mmm(m<nm<nm<n且mmm是一个整数)加密成密文ccc,加密算法为
c=E(m)=me mod nc=E(m)=m^e\ mod\ nc=E(m)=me mod n
- 将密文c解密为明文m,解密算法为
m=D(c)=cd mod n m=D(c)=c^d\ mod\ n m=D(c)=cd mod n
然而只根据n和e(注意:不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密