图像数据聚类中的种子点选择算法与股票指数排名的多准则决策方法
1. 聚类分析概述
聚类是一种重要且强大的无监督技术,它能将具有相似特征的数据对象归为一组,以识别特定类别。近年来,聚类分析在数据挖掘应用中变得极为有用,广泛应用于大数据分析、无线传感器网络、入侵检测、市场细分、医学应用、模式识别和遗传学等多个领域。
聚类算法主要分为划分式和层次式两种。层次式聚类通过一系列划分逐步进行,适用于信息处理,还可用于图像分割。划分式聚类则是寻找单一划分,而非像层次式方法那样进行多次划分,它适用于大型数据集,但聚类质量取决于输出聚类的数量和初始种子点的选择。K - 均值是一种非常流行的划分式聚类技术,简单且适用于大型现实生活数据,但缺点是需要事先知道聚类的数量 K。
由于 K - 均值算法在初始种子点选择阶段具有随机性,无法产生全局最优结果。基于种子的算法适用于球形和椭球形的聚类,但对于任意形状或细长形状的聚类,可能无法获得良好的结果。为解决聚类形状问题,有人提出了多种子概念,即一个聚类中可以存在多个种子,以检测形状并捕获合适的聚类。此外,软计算技术也通过模糊逻辑用于聚类中种子点的检测。
不同的研究人员提出了不同的硬决策算法,以实现 K - 均值算法的初始化,从而获得全局最优结果。例如,Lu 等人提出了加权聚类技术,以获得更好的种子点,减少迭代次数和计算时间,并能处理噪声的影响;Cao 等人基于粗糙集模型定义了数学函数,用于检测初始中心点和边界点;Bai 等人提出了基于密度的方法,用于聚类中心的初始化;Reddy 等人提出了使用 Voronoi 图选择初始种子点的方法。
2. 提出的种子点选择算法
本文提出的种子点检测算法基于多维