24、社交网络与学术文献个性化推荐系统解析

社交网络与学术文献个性化推荐系统解析

在当今数字化时代,社交网络和学术文献领域的数据量呈爆炸式增长。在社交网络中,用户希望能精准地结识志同道合的新朋友;在学术研究中,学者们面临着从海量文献中筛选出有价值资料的挑战。为解决这些问题,相关的推荐系统应运而生。

社交网络友谊推荐系统

在社交网络推荐系统的发展历程中,前人做了不少工作。部分研究结合了用户评价和协同过滤的思想,还有些则利用社交网络结构来开发推荐系统。例如,Garton等人描述了可用于刻画用户间连接的各种参数;Granovetter提出了弱连接理论,强调了通过连接非关联群体和个人实现高效知识共享的重要性;Jin Xie等人基于同质性和异质性值提出了一种协同过滤推荐方法,但在类似Twitter的社交网络中,当追随者行为动态变化时,该方法存在局限性。

作者 优点 缺点
Golder等人 利用了“共享兴趣和受众”“互惠”“过滤人群”的理念 未验证其模型
Gracia和Amatriain 识别了重要因素,如活动、人气、位置、推文内容等,性能良好 难以扩展,不适用于普通大众
Armentano等人 探索目标用户的追随者和关注者 仅对少量用户或节点进行分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值