社交网络与学术文献个性化推荐系统解析
在当今数字化时代,社交网络和学术文献领域的数据量呈爆炸式增长。在社交网络中,用户希望能精准地结识志同道合的新朋友;在学术研究中,学者们面临着从海量文献中筛选出有价值资料的挑战。为解决这些问题,相关的推荐系统应运而生。
社交网络友谊推荐系统
在社交网络推荐系统的发展历程中,前人做了不少工作。部分研究结合了用户评价和协同过滤的思想,还有些则利用社交网络结构来开发推荐系统。例如,Garton等人描述了可用于刻画用户间连接的各种参数;Granovetter提出了弱连接理论,强调了通过连接非关联群体和个人实现高效知识共享的重要性;Jin Xie等人基于同质性和异质性值提出了一种协同过滤推荐方法,但在类似Twitter的社交网络中,当追随者行为动态变化时,该方法存在局限性。
作者 | 优点 | 缺点 |
---|---|---|
Golder等人 | 利用了“共享兴趣和受众”“互惠”“过滤人群”的理念 | 未验证其模型 |
Gracia和Amatriain | 识别了重要因素,如活动、人气、位置、推文内容等,性能良好 | 难以扩展,不适用于普通大众 |
Armentano等人 | 探索目标用户的追随者和关注者 | 仅对少量用户或节点进行分析 |