图像分类降维与雾计算决策树中间件平台
在当今的信息技术领域,图像分类和云计算等技术有着广泛的应用。然而,它们也面临着一些挑战,比如图像分类中的高维度数据处理以及云计算在某些场景下的延迟问题。本文将探讨图像分类中的降维方法以及一种基于决策树的雾计算中间件平台,以解决这些实际问题。
图像分类的降维研究
在图像分类任务中,数据的高维度往往会带来计算复杂度的增加和分类效率的降低。为了解决这个问题,研究人员提出了一种基于决策框架的降维方法。
分类方法与数据使用
采用了一种贝叶斯分类器的变体进行分类。每个数据集用于训练的样本数量为 260 万,用于测试的样本数量为 130 万。使用了两个特征向量集:胜任特征向量集 S 和最优特征向量集 R 对样本进行测试。如果样本被分类为天空,则将其强度值设置为 255,否则设置为 0。
定性和定量质量分析
- 定性分析 :通过对数据集 II 中天空和地面样本的分类结果进行展示,直观地呈现了使用不同特征向量集进行分类的效果。
- 定量分析 :
- 计算时间 :不同数据集使用特征向量集 S 和 R 进行分类的计算时间及时间减少百分比,如下表所示:
| 数据集 | 使用集 S 的计算时间 (s) | 使用集 R 的计算时间 (s) | 时间减少百分比 |
| ---- | ---- | ---- | ---- |
| I | 1090 | 66 | 94 |
| II | 1100 |
- 计算时间 :不同数据集使用特征向量集 S 和 R 进行分类的计算时间及时间减少百分比,如下表所示: