前沿科技:雾计算、3D 内窥镜与 ECG 信号处理的创新突破
1. 雾计算服务部署的决策树中间件平台
1.1 样本分类实验
在雾计算服务部署的研究中,进行了一系列样本分类实验,实验数据如下表所示:
| 测试编号 | 样本数量 | 云 | 分支组 | 本地分支 | 云样本百分比 |
| — | — | — | — | — | — |
| 1 | 10000 | 7603 | 445 | 1952 | 76.03 |
| 2 | 20000 | 15636 | 3699 | 665 | 78.18 |
| 3 | 30000 | 20700 | 4582 | 4718 | 69.00 |
| 4 | 40000 | 26920 | 5458 | 7622 | 67.30 |
| 5 | 50000 | 35121 | 8825 | 6054 | 70.24 |
从这些数据可以看出,不同测试编号下,样本在云、分支组和本地分支的分布有所不同。通过计算,平均在云执行操作的百分比为:
[
\frac{76.03 + 78.18 + 69 + 67.3 + 70.24}{5} = 72.15\%
]
这意味着云服务的使用量减少了近((100 - 72.15) = 27.85\%),有效降低了云服务成本。
1.2 性能评估
为了验证分类算法的结果,采用了多种技术:
- Holdout 方法 :将原始数据分为 80%的训练数据集和 20%的测试数据集,构建决策树。分类准确率达到了 91%。