31、心电图信号去噪与运动想象任务特征选择研究

心电图信号去噪与运动想象任务特征选择研究

一、心电图信号去噪的优化方法

1.1 问题提出

在心电图(ECG)信号处理中,我们常常需要从含噪信号 (y) 中估计出无噪声或干净的 ECG 信号 (x)。含噪信号 (y) 可表示为:
[y = x + p + w]
其中,(x, y, p, w \in R^N),(p) 是电力线干扰(PLI),(w) 是随机噪声,采样频率为 (f_s) Hz。PLI 的幅度、相位和频率可能会发生变化,其表达式为:
[p = \sum_{n=1}^{N} a_n \cos(2\pi n f t + \phi_n)]
这里,(f) 是基频,(a_n) 和 (\phi_n) 分别是第 (n) 次谐波的幅度和相位,(N) 是谐波的数量。此外,ECG 信号还会受到诸如肌电图(EMG)和仪器噪声等低阶伪影的干扰。

1.2 不同去噪方法

1.2.1 通用总变分去噪(TVD)

TVD 问题的一般公式为:
[\arg \min_{x} \left{ |y - x|_2^2 + \lambda |D_2 x|_1 \right}]
其中,(\lambda) 是正则化参数,(D_2) 是大小为 ((N - 2) \times N) 的二阶差分矩阵,定义为:
[D_2 =
\begin{bmatrix}
1 & -2 & 1 \
1 & -2 & 1 \
\ddots & \ddots & \ddots \
1 & -2 & 1
\e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值