心电图信号去噪与运动想象任务特征选择研究
一、心电图信号去噪的优化方法
1.1 问题提出
在心电图(ECG)信号处理中,我们常常需要从含噪信号 (y) 中估计出无噪声或干净的 ECG 信号 (x)。含噪信号 (y) 可表示为:
[y = x + p + w]
其中,(x, y, p, w \in R^N),(p) 是电力线干扰(PLI),(w) 是随机噪声,采样频率为 (f_s) Hz。PLI 的幅度、相位和频率可能会发生变化,其表达式为:
[p = \sum_{n=1}^{N} a_n \cos(2\pi n f t + \phi_n)]
这里,(f) 是基频,(a_n) 和 (\phi_n) 分别是第 (n) 次谐波的幅度和相位,(N) 是谐波的数量。此外,ECG 信号还会受到诸如肌电图(EMG)和仪器噪声等低阶伪影的干扰。
1.2 不同去噪方法
1.2.1 通用总变分去噪(TVD)
TVD 问题的一般公式为:
[\arg \min_{x} \left{ |y - x|_2^2 + \lambda |D_2 x|_1 \right}]
其中,(\lambda) 是正则化参数,(D_2) 是大小为 ((N - 2) \times N) 的二阶差分矩阵,定义为:
[D_2 =
\begin{bmatrix}
1 & -2 & 1 \
1 & -2 & 1 \
\ddots & \ddots & \ddots \
1 & -2 & 1
\e