多目标特征选择与欧拉时间图可视化技术探索
多目标特征选择在运动想象脑电信号分类中的应用
特征选择的重要性与现有方法
在运动想象脑电信号分类中,特征选择不仅有助于应对各种挑战,还能减少冗余和无关特征,降低分类技术的计算成本。以往的特征选择工作主要分为过滤式和包裹式两种方法。过滤式方法通过信息论度量最大化特征集的信息含量;包裹式方法则根据分类性能判断特征集的适用性。大多数先前的方法将最大化分类准确率作为特征选择的唯一目标,少数考虑多目标特征选择的工作主要是双目标公式,如同时最大化精度和召回率,或同时最小化分类错误率和特征集的基数。
实验设计
BCI系统概述
一个典型的脑机接口(BCI)系统包括连接受试者大脑和计算机的前向非神经肌肉路径(可能是有线或无线连接),以及基于计算机生成的控制信号操作外部(康复)设备的反馈路径。前向路径包括脑信号采集、信号预处理、特征提取、特征选择(训练阶段)和分类等主要构建块。具体的数据集和各阶段信息如下表所示:
| 阶段 | 详情 |
| — | — |
| 数据采集 | BCI Competition 2008—Graz Dataset B(来自九名受试者的250Hz左右运动想象脑电信号,每个受试者有两个会话) |
| 预处理 | 带通滤波,通带为0.5 - 100Hz,使用眼电图(EOG)与脑电信号的回归去除EOG伪迹 |
| 特征提取 | 使用Welch方法进行单边功率谱密度估计(来自C3、C4和Cz电极的脑电信号,特征维度 = 378) |
| 分类 | 线性支持向量机(LSVM) |