我们为什么使用弧度?

本文揭示了弧度在数学运算中的优势,通过直觉和实例比较,解释了弧度测量更简洁,尤其是在微积分和几何计算中的应用,如弧长和扇形面积计算。弧度制与圆周率紧密相连,使得代数表达更为直观和高效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在小学我们就学习了角度,然后到了初高中才学习了弧度,但弧度这个后来者却成为了数学中的重要组成部分,取角度而代之,这是为什么?

简单的回答就是,弧度使得代数运算更简单,下面来详细解释下。

往下面看的时候需要你对角度、弧度有所了解,如果不清楚可以先看“为什么会有弧度制”这篇文章,还可以扩展看下这里这里

1 角的度量

首先来清晰下本文要解决的问题,让我们从角的定义说起。角可看作是旋转运动的产物:

 角的大小可以用多种方式来度量:

 解释下上面这个动画:

  • 角度是这么度量的:当没有旋转时,角的大小记作0 ,当旋转了\frac{1}{4} 时,记作90 ,旋转一周记作360

  • 弧度是这么度量的:当没有旋转时,角的大小记作0 ,旋转了\frac{1}{4} 时,记作\frac{1}{2}\pi ,旋转一周记作2\pi

  • 当然还可以有别的度量方式,比如没有旋转时,角的大小记作0 ,旋转一周记作1 ,等等

在这么多计量方式中,弧度会使得代数运算更简单,这就是本文要解释的核心问题。

2 直觉

我们先通过直觉来解释下为什么弧度会更好:

        (1)角度认为旋转一周,数值会从0 变化到360 。这种计量方法是古巴比伦人发明的,可能源于古巴比伦一直使用60 进制,还可能因为360 容易被整除,其真因数除了1 和自身以外,一共有22 个(2 、3 、4 、5 、6 、8 、9 、10 、12 、15 、18 、20 、24 、30 、36 、40 、45 、60 、72 、90 、120 、180 ),所以很多特殊角的角度都是整数。

不过从数学角度看,上面的理由都不太重要,古巴比伦人这样发明其实蛮随意的。

        (2)而弧度认为旋转一周,数值会从0 变化到2\pi ,这种计量方法包含了圆周率\pi ,这是圆的本质特征,所以它会是更好的计量方法。

下面再来定量的分析,通过计算来展示下弧度是更好的计量方法。

3 弧长和扇形面积

假设圆的半径为r ,其中有某x 角:

如果用弧度(下面用x 表示采用的是弧度)来计算弧长AB 以及扇形AOB 的面积,因为弧度包含了圆周率\pi ,所以结果很简单:

 而用角度(下面用x_\circ 表示采用的是角度)来计算的话,其结果会更复杂:

4 重要极限

在微积分中有一个重要的极限\lim_{x\to 0}\frac{\sin x}{x} ,用弧度和角度得到的答案也不一样。

4.1 弧度

首先引入一个单位圆,从中取x 角:

x\in(-\frac{\pi}{2},\frac{\pi}{2}) 中,根据三角函数,容易得到\sin x 以及\tan x :

以及:

借助上一节推导过弧度下的扇形面积,上面不等式可以写作:

\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x

最终利用夹逼定理可以求出:

\lim_{x\to 0}\frac{\sin x}{x}=1

4.2 角度

如果用角度的话,那么这些不等式:

 借助角度下的扇形面积,可以写作:

\frac{1}{2}\sin_\circ x_\circ < \pi\times\frac{x_\circ}{360} < \frac{1}{2}\tan_\circ x_\circ

说明下,上面的\sin_\circ 和\tan_\circ 是角度制下的三角函数,它们接受角度值,和弧度制下的三角函数关系为:

\sin_\circ 90=\sin\frac{\pi}{2},\quad \tan_\circ 180=\tan \pi

接着用夹逼定理,最终可得:

\lim_{x\to 0}\frac{\sin_\circ x_\circ}{x_\circ}=\frac{\pi}{180}

5 求导

基于上述重要极限\lim_{x\to 0}\frac{\sin x}{x} 的求解,可得弧度制下\sin a 的导数为:

 通过链式法则就可以得到角度制下\sin_\circ a_\circ 的导数为:

\begin{aligned}     (\sin_\circ a_\circ)'          &=\left(\sin (\frac{\pi}{180}a_\circ)\right)' \\         &=\frac{\pi }{​{​{​{180}}}}\cos (\frac{\pi}{180}a_\circ)= \frac{\pi }{​{​{​{180}}}}\cos_\circ {a_\circ} \end{aligned}

6 总结

可以看到,在弧度制下,从弧长计算开始就很简单,这种简单一直延续到各种计算:

可以想象,除了上述结果外,各种三角函数、对应泰勒级数等在弧度制下都会最简单,所以我们会使用弧度。


原创内容,未授权请勿转载,内容合作意见反馈联系公众号「马同学图解数学」

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值