目录
3.基于Q-learning强化学习的频谱分配算法MATLAB程序
动态频谱分配(Dynamic Spectrum Allocation, DSA)是解决无线通信中频谱资源稀缺问题的关键技术,其核心是根据实时网络状态(如用户需求、信道质量、干扰水平等)动态调整频谱资源分配策略,以提升频谱利用率和通信质量。传统 DSA 算法(如博弈论、图论、优化理论等)依赖人工设计的规则或模型,难以适应复杂、动态变化的无线环境。而基于人工智能(AI)的 DSA 算法通过机器学习(ML)或深度学习(DL)模型自主学习频谱分配规律,具备更强的自适应能力和优化性能。
1.基于人工智能技术的动态频谱分配算法核心原理
AI驱动的DSA算法本质是将频谱分配问题转化为机器学习任务,通过模型从历史数据或实时环境中学习 “环境状态→最优分配策略” 的映射关系,实现动态、智能的频谱资源调度。其核心流程包括:
状态感知与特征提取
采集无线环境的关键参数作为模型输入(状态特征),例如:
用户设备位置、通信需求(带宽、速率);
信道质量(信噪比 SNR、信道增益);
干扰水平(同频 / 邻频干扰功率);
频谱空洞(未被占用的频段)。
模型训练与决策
利用监督学习、强化学习或深度学习模型,学习状态特征与最优频谱分配策略的映射:
监督学习:基于历史最优分配数据训练分类 / 回归模型,直接预测当前状态下的分配策略;
强化学习:通过与环境交互(试错)学习策略,最大化长期累积收益(如频谱利用率、用户满意度);
深度学习:利用神经网络(如 CNN、LSTM)处理高维、非线性状态特征,提升复杂场景下的决策精度。
动态调整与反馈
根据实时环境变化(如新用户接入、信道质量突变),模型动态更新分配策略,并通过反馈机制(如用户 QoS 指标)优化模型参数,实现闭环自适应。
2.基于Q-learning强化学习的频谱分配算法
Q-learning是一种无模型的强化学习算法,通过学习最优动作价值函数Q(s,a)来找到最优策略。Q-learning 通过以下迭代公式更新动作价值函数:
这里,频谱分配问题可建模的四元组(S,A,P,R):
状态空间S:所有可能的信道占用状态
动作空间A:所有可能的用户-信道分配组合
状态转移概率P(s′∣s,a):在状态s执行动作a后转移到状态s′的概率
奖励函数R(s,a):执行动作a后获得的即时奖励
3.基于Q-learning强化学习的频谱分配算法MATLAB程序
频谱分配问题的具体数学表示如下:
状态表示
MATLAB程序设计为:
%% 辅助函数: 执行分配动作并返回奖励和新状态
function [reward, next_channel_status] = execute_action(channel_status, allocation)
% 全局参数
global num_channels;
% 初始化奖励
reward = 0;
% 复制当前信道状态
next_channel_status = channel_status;
% 计算每个用户的吞吐量和干扰
for i = 1:num_channels
user = allocation(i);
% 如果信道分配给用户
if user > 0
% 检查信道是否空闲
if channel_status(i) == 0
% 成功分配:更新信道状态为已占用
next_channel_status(i) = 1;
% 计算该用户的吞吐量(简化模型)
snr = 10 * rand; % 随机信噪比 (dB)
throughput = log2(1 + 10^(snr/10)); % Shannon公式
% 添加到总奖励
reward = reward + throughput;
else
% 信道已被占用:产生干扰惩罚
reward = reward - 1;
end
end
end
% 随机释放一些信道(模拟动态环境)
release_prob = 0.1;
for i = 1:num_channels
if next_channel_status(i) == 1 && rand < release_prob
next_channel_status(i) = 0;
end
end
end
MATLAB程序设计为:
动作表示
Q(state, action) = Q(state, action) + alpha * (reward + gamma * max(Q(next_state, :)) - Q(state, action));
奖励函数
MATLAB程序设计为:
if channel_status(i) == 0
% 成功分配
snr = 10 * rand; % 随机信噪比 (dB)
throughput = log2(1 + 10^(snr/10)); % Shannon公式
reward = reward + throughput;
else
% 信道已占用,惩罚
reward = reward - 1;
end