自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8186)
  • 收藏
  • 关注

转载 LLM本质上永远无法实现真正的正确推理

本文不仅严格定义了什么是“正确推理”,还从逻辑学的根本原则出发,深入剖析了LLM的工作原理及其局限性,最终得出结论:追求不具备正确性保障的LLM推理能力,如同追求永动机一样徒劳。近年来,以ChatGPT为代表的大语言模型(LLM)和AIGC工具快速发展,不少专家甚至非专业人士开始鼓吹LLM具备了“推理能力”。论文开篇即指出,尽管当前社会对LLM的“推理能力”充满乐观,但这种看法实则是一种“幻觉”。这是一个正确的推理,因为(1)(2)为(3)提供了证据,(3)(4)又为(5)提供了证据。

2025-08-28 17:33:47 8

转载 北京大学、通用人工智能实验室联合推出Meta-R1,让大型推理模型“长出大脑的前额叶”

波动智能旨在建立一个基于人类情绪与反应的真实需求洞察及满足的价值体系,融合人工智能与意识科学,构建覆盖情绪识别、建模与推荐的智能引擎,自主研发面向社交、电商等场景的多模态情绪识别引擎、情绪标签系统及情绪智能推荐算法,形成从情绪采集、建模到商业转化的完整解决方案。在人类问题解决中,元层能够先对任务进行分析和规划,在执行过程中不断评估进展与错误,并在满足目标时果断收尾,从而提升效率、减少错误累积。它将认知科学中的元认知理论,系统性地嵌入推理型大语言模型的架构,旨在让模型具备自我规划、自我监控和自我终止的能力。

2025-08-27 16:54:54 60

转载 AI的组合创造力:机器能否真正理解创意的诞生过程?

为了科学地评估AI的创造力理解能力,北京大学的研究团队开发了IEI框架,首次将复杂的组合创造力分解为识别-理解-暗示三个递进的认知层次,将AI的创造力评估从“产品质量”转向“过程理解”。表现出了显著优势:在评估“回答的对不对”的精确率方面可以达到75.67%,在评估“识别的全不全”的召回率方面可以达到85.00%,明显超越普通人类的53.42%和70.33%,多数主流AI模型也都超越了普通人类表现,这表明AI在基础概念提取方面确实具备了可靠的能力。”当乔布斯说出这句话时,他描述的是人类独有的创造过程。

2025-08-27 16:54:54 33

转载 超97万:图灵奖得主Yoshua Bengio成历史被引用最高学者,何恺明进总榜前五

从学术主页来看,Bengio 2014 年提出的 「生成对抗网络(Generative Adversarial Nets)」 引用量已突破 10 万次,甚至超过了他与 Yann LeCun 和 Geoffrey Hinton 合著的经典论文 「Deep Learning」,不过,后者的引用量同样也超过 10 万次。在 top 10 名单中,我们也看到了 Ilya Sutskever 的身影,总引用量 67 万 +,排名第 7,单篇论文最高引用量 18 万 +。欢迎扫描二维码或访问。

2025-08-26 17:17:42 94

转载 完美自指: 一个关于意识的主动推理理论

我们直觉地意识到,正如我们不同思想背后存在着一个统一的底层织布那样,存在本身也属于一个统一的领域,这个领域以某种方式反映于自身,并通过巧妙的扭曲与折叠——仿佛大脑本身的褶皱,使得。通过不断的感官输入(包括视觉、听觉、内感受、本体觉、内脏运动、免疫系统等)与顶层预测之间的误差交互,系统会逐步建立越来越抽象、时间跨度更广的表征,如自我、情绪、计划、意图、想象,最终形成一个内在“现实”。具体而言,体验内容的变化可归因于高层信念的松动(见 REBUS 模型),而意识品质的变化更可能来自认知深度的上升。

2025-08-26 17:17:42 79

转载 机器人终身强化学习中的知识保存和组合

来源:CreateAMindhttps://www.nature.com/articles/s42256-025-00983-2人类能够在一生中不断积累知识,并发展出越来越复杂的行为和技能,这种能力被称为“终身学习”。尽管终身学习能力被认为是构成通用智能的一个基本机制,但最近的人工智能进展大多在狭窄的、专门的领域表现出色,通常缺乏这种终身学习能力。在这里,我们介绍了一个机器人终身强化学习框架,通过借鉴贝叶斯非参数领域开发的知识空间来填补这一空白。此外,我们通过将语言嵌入整合到框架中,增强了代理对任务的语义理

2025-08-25 16:24:20 35

转载 50人!2025年“科学探索奖”获奖名单公布

据统计,截至2025年3月,“科学探索奖”获奖人中共有11人的研究成果入选年度“中国十大科学进展”,在《科学》《自然》《细胞》等知名学术期刊发表论文超40篇。获奖人机构分布方面,中国科学院(含中国科学技术大学5人)共计14人入选,北京大学(4人)、上海交通大学(4人)紧随其后。西湖大学、南方科技大学作为新型研究型大学也各有2人、1人入选。

2025-08-25 16:24:20 24

转载 扎克伯格妻子牵头研发生物学推理模型rBio,无需实验数据,可从虚拟细胞中学习推理

软性”评估指标来训练大模型,可能导致模型输出失准。在开发 rBio 的过程中,陈·扎克伯格倡议还构建了一个更广泛的框架,以用于整合虚拟细胞模型的海量知识,这将有助于在未来几年打造一系列易于获取的生物学 AI 工具。它表明利用生物模型的预测结果,在无需使用实验数据的前提之下,通过模拟的方式就能训练出性能强大的推理模型,而这无疑代表了一种全新的训练范式。rBio 颠覆了传统模式——它将生物学世界模型的模拟结果用作“软验证器”,把虚拟细胞模型转化为强化学习式推理的训练环境,从而能够吸收上述模型的核心知识。

2025-08-25 16:24:20 40

转载 从头开始设计全新分子结构,AI构建化合物成功对抗超级细菌

最近,麻省理工学院(MIT)生物工程教授 Jim Collins 领导的研究团队证明:在大量抗菌物质数据集上训练的生成式 AI 算法,可以帮助科学家构想出数百万种具有杀菌潜力的新型分子,并且其中部分分子在小鼠实验中展现出显著效力。在从头生成方法中,该研究取消片段输入要求,让 CReM 和 VAE 模型基于训练获得的知识自主设计分子。欢迎扫描二维码或访问。

2025-08-25 16:24:20 11

转载 OpenAI用GPT-4b攻克诺奖难题!人体细胞「返老还童」,逆转效率飙升50倍

在第10天,使用不同RetroSOX和RetroKLF变体组合(RK1-RK4)的细胞,其晚期标记物TRA-1-60(左)和NANOG(右)的表达水平远高于使用标准OSKM(检测不到)的对照组。综上所述,高阳性率、深度的序列编辑、标记物的提前出现以及AP阳性集落的形成,这些早期证据共同表明,AI指导的蛋白质设计能够极大地推动干细胞重编程研究的进程。从寻找抗衰老疗法,到设计新药、解决粮食危机,当人类的智慧与AI的超凡算力相结合,研究团队解决科学难题的速度,将发生革命性的改变。

2025-08-24 15:38:23 88

转载 GPT-5 发明了新数学:这是通用人工智能吗?

一位推特用户称,GPT-5展示了一些前所未见的新数学内容,互联网上找不到相关信息,且它能用新的数学算法和方法给出正确证明。如果机器开始解决我们解决不了的问题,或使用我们无法完全理解的技术,我们可能会把数学变成黑箱——讽刺的是,这正是数学一直试图避免的。这篇博文的目的不是解释数学原理,而是要表明人工智能不仅能证明数学定理,还能创造新的数学内容。

2025-08-24 15:38:23 44

转载 南大周志华团队最新力作:一个算法通吃所有,在线学习迎来新范式?

该团队也进行了理论分析,结果表明,UMA2 能够有效最小化一般凸函数的自适应遗憾值,并在可能的情况下自动利用函数的「易解性」。相比现有的自适应算法,UMA2 在每个区间上引入了更大规模的专家集合,以应对函数类型及其相关参数不确定性的挑战。受静态遗憾值通用算法研究成果的启发,该团队选择的元算法是 Adapt-ML-Prod,他们还将其扩展为了支持「休眠专家」的版本,即仅在特定时间段活跃的专家。与以往依赖专用专家的自适应算法不同,UMA3 提升的是单个专家的能力,使其能够处理更广泛的凸函数类别。

2025-08-24 15:38:23 40

转载 Nature | 秩序的边缘:免疫系统竟靠“制造噪音”来识别敌我?

然而,在癌细胞中,p53的永久性失活,则让这种可塑性失控,如同打开了“潘多拉的魔盒”,癌细胞利用这种被放大的“基因噪音”来不断“变身”,最终导致恶性进展。mTEC细胞通过抑制p53,主动地“升高”了自身基因组的“温度”,使其从一个有序的“固态”,转变为一个更具流动性的“液态”。他们发现了一个惊人的规律。当一个mTEC细胞随机表达某个组织特异性基因(例如,一个通常只在神经元中表达的基因)时,不仅仅是这个基因自身的调控区域变得开放,其周围数十万个碱基对的广阔基因组区域,都出现了染色质可及性的微弱提升。

2025-08-23 17:36:30 43

转载 AI已迷失方向?强化学习教父Sutton最新发布OaK架构,挑战当前AI范式,提出超级智能新构想

有趣的是,使用选项模型进行规划,其数学形式与传统的基于单步动作的价值迭代惊人地相似,只是将“动作”替换为了“选项”,将“单步奖励”替换为了“选项执行期间的累积奖励”。这无疑是一个意义深远的智力里程碑,其影响将是革命性的。所有这一切,都在一个良性的、开放式的发现循环中协同工作:状态特征的发现,激发了问题、选项和模型的发现,而这些新产生的组件又反过来促进了新的、更抽象特征的形成。此外,在另一篇《奖励即足够》的论文中,我们进一步论证了,在一个足够复杂的世界里,即使是简单的奖励信号也足以引出智能的所有属性。

2025-08-23 17:36:30 77

转载 AI要“读懂”你?拆解登上Nature杂志的“半人马”AI心理模型

除了上述实验,“半人马”还在未曾出现在训练数据集中的其他多种类型的任务,诸如在自然环境中进行选择,涉及道德判断的决策,经济相关的博弈等表现的也比 未经微调的Llama 更好。下面来看论文中给出的初级案例。任务做出的选择,该任务中,被试者根据几个专家的估计进行决策,不同的专家有不同的置信度。但我们也不应该高估“半人马”的影响,2024年的一篇名为“在心理学研究中使用大模型的机遇和危险”的综述[4]中,指出用大模型代替心理研究中的人类被试者,存在着三个问题,首先是大模型的训练数据多来自受教育的西方人。

2025-08-23 17:36:30 176

转载 聪明的Agent,更要学会忽略|Gemini 产品负责人VS DeepMind研究员万字实录

8月20日,Gemini 产品负责人 Tulsee Doshi与Google DeepMind 杰出研究员 Madhavi Sewak 共同接受了海外播客 Superhuman AI 主持人 Hassan 的专访。本次对话探讨了Gemini 模型系列的最新进展及其在现实世界中的应用,包括 Gemini 2.5 Pro 与 2.5 Flash 在构建 AI Agent 时的协同策略,“提示工程”到“上下文工程”的范式转变,国际数学奥林匹克竞赛(IMO)的胜利对模型通用推理能力的意义,AI 时代下创造力与“品味

2025-08-22 13:42:21 58

转载 大模型对情感刺激的反应与人类高度一致,这为构建更具同理心的人工智能系统奠定基础

波动智能旨在建立一个基于人类情绪与反应的真实需求洞察及满足的价值体系,融合人工智能与意识科学,构建覆盖情绪识别、建模与推荐的智能引擎,自主研发面向社交、电商等场景的多模态情绪识别引擎、情绪标签系统及情绪智能推荐算法,形成从情绪采集、建模到商业转化的完整解决方案。若模型能够可靠地捕捉和量化情绪,就能为虚拟助理提供更具同理心的回应,为交互式教学系统设计更精准的反馈,为心理辅导平台建立更安全的情绪预警。在虚拟助理领域,它们能够基于用户的语气与情绪词汇,实时调整对话风格,实现更具同理心的交互。在心理辅导初筛环节,

2025-08-22 13:42:21 178

转载 张益唐专访:70岁回国,我不愿意仅当一片落叶

那我能做的,就是我要再继续研究,那是一天中午,我的外婆在炒菜,我站在她后面,就胡思乱想,如果我把两个正方形,一个大的,一个小的,把小的套在大的里边,会出来什么呢?我去年在天津见到了陈景润的儿子,陈景润最后重病缠身,他的生命最后时刻,他要把他那些论文都带到病房里去,要继续工作,他周围的人、包括他的爱人就不让他弄,怕影响休息,最后他还发火了,说你们不让我工作,我怎么办。所以当你真正去做学问的时候,千万不要想着,我是个天才,你想我就是很平常一个人,我走的路,别人都在走,但我应该要比别人更勤奋一点,更灵活一点。

2025-08-22 13:42:21 280

转载 诺奖得主谈「AGI试金石」:AI自创游戏并相互教学

无论是过去和现在,研究人员都在使用大量的模拟环境,非常逼真的环境,如 3D 游戏引擎,来为系统创建更多训练数据,以帮助它们理解物理世界。以数学领域的 AIME 为例,DeepMind 的模型的最新结果已达到 99.2% 的正确率,意味着已经进入了一个回报非常有限的阶段,这些 benchmark 正迅速达到饱和,甚至可能因测试本身的误差影响评估效果。让模型去玩各种不同的游戏,并测试它们的能力。无论是依赖对物理世界预判的机器人技术的突破,还是 AI 日常助手,对时空背景的把握,都离不开世界模型的支撑。

2025-08-22 13:42:21 41

转载 宇宙智能水平的设定 :对时空、不确定性、熵和三大物理理论的差异产生关键性影响?

这一推论的核心依据在于"欧米伽智能体"的理论设定:它是一个全知全能的存在,其五大功能模块均达到无穷大的理想状态。已经开展的研究表明,智能与意识的本质、时空的深层结构、主客观认知的边界、不确定性的来源、熵的演化机制,以及物理学三大理论的统一等重大议题,都与宇宙智能水平的设定及其动态变化存在着内在的、不可分割的关联。进而,倘若宇宙的任何局部从"欧米伽智能体"状态降级为"有限智能体",整个宇宙系统就不再维持纯粹的欧米伽智能体特征,而是演化为一个由有限智能体与绝对零智能体构成的复合混合系统。

2025-08-21 17:46:59 153

转载 AI Scientist生成的论文被指「剽窃」,回应称「未引用相关研究」,AI自动化科研还靠谱吗?

专攻扩散模型的佐治亚理工学院机器学习研究员 Ben Hoover 告诉《Nature》,按照 5 分制,他会给 AI Scientist 生成的论文与 Park 的论文重合度打 3 分,并指出 AI Scientist 生成的论文的质量远低于 Park 的研究,本应予以引用,但「不至于认定为剽窃」。今年 2 月,Gupta 和 Pruthi 报告称,根据他们咨询的外部专家意见,发现了多篇 AI 生成的论文存在未经注明就使用他人观点的现象,尽管论文没有直接复制词句。

2025-08-21 17:46:59 59

转载 基因决定论被打破之后:生命到底是什么?

其次,生命是复杂的。而且,有一点似乎很明确:从类人猿祖先到我们人类的过渡使我们拥有了能进行语言交流、创造文化等能力的大脑,这是其他类人猿所不具备的,至少达不到我们的程度,背后的原因我们目前还不完全清楚,但无论具体是什么,都是调控方式的改变,而非新基因的出现。而进入文明社会后,从农业时代开始,人们有了分工,有的负责宗教,有的负责管理,有的负责烹饪。当然,从我们的对话中也能看出,我们想知道在不久的将来医疗健康会是什么样子,想知道那些新的奇迹、新的工具以及对生命更深入的理解,能给我们每个人带来什么帮助。

2025-08-21 17:46:59 47

转载 Sam Altman :GPT-6已经在路上,DeepSeek是OpenAI开源重要因素

对内容创作者和知识工作者而言,这意味着工作流可被自动识别与复用,例如固定的写作模版、术语表与发布渠道,任务链条更顺滑,从收集资料,到生成初稿,再到多轮改写,由统一的上下文承接,长期偏好沉淀后,输出风格更稳定,也更像本人。记忆将是GPT-6最重要的产品方向之一 ,面向的是长期个性化体验 ,例如记住创作风格, 日程规律 ,常用工具链,用户可定义语气与人格,不只是热情或冷静这类简单开关,还包括更强的可塑性,更像个人化助手。过去一年的升级,更多来自模型本身的语言能力与工具接入,但真正影响留存的是是否懂我。

2025-08-20 16:31:30 42

转载 万字追问:万物本质皆在运算?

人类正处于一场范式革命之中。范式转变往往伴随着阵痛。新观念与旧世界观相容时,人们欣然接受;而二者相悖时,人们便心生抵触。地心说就是一个经典案例。该学说由托勒密(Ptolemy)的“本轮说”进一步完善,认为太阳、月亮、行星和恒星围绕着静止不动的地球运转。这种认知既符合直觉又顺应宗教传统,曾被视为重大科学成就,主导了人类近2000年的宇宙观。因此,哥白尼的“日心说”虽然是科学进步的标志,更是备受争议的“异端邪说”。正如本杰明·布拉顿(Benjamin Bratton)所言,“日心说”之于某些人甚至造成了存在主义

2025-08-20 16:31:30 77

转载 有效复杂性的边界:在有序与无序之间

举一个简单的例子,任何一个完全由00对和11对组成的比特串,都有着一个显而易见并能用非常简短的方式进行描述的规律,即由奇数位组成的序列与由偶数位组成的序列完全相同。答案之一指向一类极其重要的系统,其中的每一个系统都在识别到达它的数据流中的特定规律,并将这些规律压缩成一个简洁的信息集。我们周围世界中的任何实体,例如每个人类个体,其存在不仅依赖于简单的基本物理定律和早期宇宙的边界条件,也取决于一连串长得不可思议的概率性事件的结果,而其中每一个事件原本都可能以不同的方式发生。一个给定长度的随机比特串拥有最大的。

2025-08-20 16:31:30 60

转载 以Agent为中心的世界正在到来|AWS CEO最新万字实录

8月19日,AWS CEO Matt Garman 接受海外播客Matt Garman的访谈,本次对话聚焦于AI对白领工作模式的颠覆性影响、软件开发范式的变迁、下一代基础设施的瓶颈挑战、AWS自研芯片的核心战略,以及未来模型生态的演进方向。针对“AI将导致白领大失业”的普遍焦虑,Garman认为AI非但不会取代初级开发者,反而会成为他们最佳的培训工具,此外他不认同“单一全能模型将主导一切”的看法,坚信未来属于由大型通用模型与海量专用模型协同工作的“混合专家系统”。此外,AI基础设施建设的瓶颈会在算力、电力、

2025-08-20 16:31:30 38

转载 万字追问:下一个十年,我们能在计算机里,为你的大脑造一个数字孪生吗?

近年来,得益于方法学的重大进步和从分子到整个大脑多层次的数字数据集成及建模,脑科学研究无疑已迈入一个新时代。在这一背景下,神经科学与技术、计算的交叉领域已取得重要进展。新兴的大脑科学整合了高质量的研究、多层次数据的集成、跨学科的大规模合作文化,同时促进了科研成果的应用转化。就如欧洲人脑计划(HBP)所提倡的那样,采取系统化的方法对于应对未来十年内的医学与技术挑战至关重要。本文旨在为未来十年的数字大脑研究发展一套新概念,并与广泛的研究社区展开讨论,寻找共识点,以此确立科学的共同目标。同时,提供一个科学框架,支

2025-08-19 16:54:59 34

转载 真正的Agent是无缝穿梭的|OpenAI联合创始人万字实录

8月16日,OpenAI联合创始人兼总裁 Greg Brockman接受Latent Space 播客访谈,本次对话围绕 OpenAI 近期发布的 GPT-5、开源模型 GPT-OSS 展开,深入探讨了从 GPT-4 到 GPT-5 在“推理”能力上的范式飞跃、强化学习与海量算力在模型能力扩展中的核心作用、以及 AI 模型惊人的跨领域泛化能力等等话题。Greg Brockman认为行业中所谓的算法“瓶颈”或“撞墙”,在很大程度上只是工程上的 Bug 或可被克服的疏漏,而非根本性的科学障碍。只要有足够的算力,

2025-08-19 16:54:59 101

转载 当物理学家一层一层一层地拨开奇点,时空的尽头有什么?

在研究包含黑洞的区域时,这位物理学家发现熵有两个来源:一是标准来源(黑洞周围空间中量子粒子的可能排列方式),但黑洞本身也具有熵,其大小取决于黑洞的表面积。简言之,只要能量非负,引力就应是吸引的。为了数学上的便利,他假设存在无限种类的粒子——这种不切实际的设定让一些物理学家质疑:相较于第二层的理论,这一第三层的模型(现实中已知的粒子仅约17种)是否更接近于真实世界。但布索等物理学家推测,在高度量子化的领域中,即使没有传统的面积概念,光线仍会遭遇“终点”——某种彭罗斯认可的奇点形式将延续至核心理论中。

2025-08-19 16:54:59 81

转载 从模型之战到Agent之战:未来90天必须关注的3个信号

当一个复杂任务(比如“从网页下载数据,整理到Excel,然后做成PPT”)下达时,一个“总管Agent”会依次调用这些“专家Agent”来接力完成。任务在一个Agent网络中动态传递,每个Agent评估任务后,决定是自己处理还是移交给更合适的Agent,非常适合复杂的客户服务场景。华盛顿大学在2025年的一篇论文中,提出了一个“AI自治五级”框架,它不关注Agent的能力,只关注用户在交互中的角色。把这些子任务派发给不同的“专家Agent”,然后监督它们的工作,最后将结果整合成一份完整的报告。

2025-08-18 17:41:05 143

转载 《自然Nature》带我们透视大模型,使用SemanticLens轻松理解大型神经网络的内部工作原理

波动智能旨在建立一个基于人类情绪与反应的真实需求洞察及满足的价值体系,融合人工智能与意识科学,构建覆盖情绪识别、建模与推荐的智能引擎,自主研发面向社交、电商等场景的多模态情绪识别引擎、情绪标签系统及情绪智能推荐算法,形成从情绪采集、建模到商业转化的完整解决方案。它的样本开始,到将这些样本压缩进可比较的语义空间,再到检索、标注、对比、归因和审计,步骤紧凑、逻辑闭环,最后给出一幅可导航、可验证的推理图谱。一个模型的内部,并不仅仅是找到若干高激活的示例图片,更重要的是为这些示例赋予量化的、可比较的可解释性指标。

2025-08-18 17:41:05 64

转载 AI发现新物理定律:纠正等离子体理论多年错误假设

一种长期存在的理论认为,尘埃颗粒的半径越大,粘附在该颗粒上的电荷就越大,与颗粒的半径成正比。美丽的星云、星环,其中广泛存在的组成成分——尘埃等离子体,是一种由离子、电子和带电尘埃颗粒组成的混合体系,广泛分布在星际空间中,其粒子间通过等离子体介导的库仑力相互作用,具有非保守、非互易等复杂特性。AI模型在不被告知正确答案的前提下,主动揭示了新的物理过程。

2025-08-18 17:41:05 131

转载 【万字长文】深入浅出 MoE 模型让大模型既 “聪明” 又 “省电” 的秘密

来源:AIGC深一度混合专家模型(Mixture of Experts, MoE) 用多个小型前馈网络(FFN)(称为专家)和一个可学习的路由/门控网络替代了密集型前馈块,其中路由网络会将每个token(或样本)发送给少数几个专家。这在保持每个token计算量较低的同时,提供了巨大的参数容量——因此你可以快速预训练超大模型——但这也增加了工程复杂性:存储所有专家所需的内存、路由逻辑、负载均衡以及跨设备通信。可以把MoE层想象成一个有许多专家的呼叫中心。对于每个进来的“呼叫”(输入token的隐藏向量),路由

2025-08-18 17:41:05 47

转载 万字追问:AI会开启一个新的轴心时代吗?

后者认为,演化不仅通过自然选择推进,也通过“共生起源”(彼此独立的实体通过新信息的转输,例如,细菌携带的DNA片段被“复制粘贴”进宿主细胞)结合为一个相互依存的有机整体的相互转化。简言之,它们是工具。卡尔·雅斯贝尔斯(Karl Jaspers)以其对所谓“轴心时代”(Axial Age)的研究而著称:两千多年前,东西方几乎同时诞生了诸多伟大的宗教和哲学——中国的儒家、印度的奥义书与佛教、古希腊的荷马,以及希伯来的众先知。他认为现代的、自由主义的世界,启蒙运动下的世界,正试图瓦解那种永恒的、终极的神圣秩序。

2025-08-17 16:30:42 175

转载 400万人围观的分层推理模型,「分层架构」竟不起作用?性能提升另有隐情?

值得注意的是,在我们的实验中,仍然存在一定程度的跨任务迁移学习——在评估集的不同任务之间。我们实验的一个更强的版本是,在每个评估任务上单独运行 HRM 流程,这样模型在训练时只会看到它将被评估的那一个任务的演示对的增强版本。原则上,两者上的得分应该相似。尽管大于 0% 的得分显示出模型的某些能力,但我们不认为 2% 的得分是在 ARC-AGI-2 上取得的有意义的进展。在早期版本中,他们做过比较,发现在更大的类 ARC 数据集上,少样本上下文效果很好,但在样本受限的 ARC 上,谜题嵌入的表现明显更好。

2025-08-17 16:30:42 141

转载 自注意力机制的“思维切换”:从位置记忆到语义理解的相变

本文在可解的点积注意力(dot-product attention)模型中,通过对具有可训练、低秩查询(query)与键(key)矩阵的非线性交互层进行严格的高维分析,给出了经验风险最小化(empirical risk minimization)非凸损失全局最优解的闭式特征化。受物理学中“相变”理论启发,本文构建了一个可解析、只含单层点积注意力的师生模型,并在高维极限下通过精确计算证明,模型会在“位置”与“语义”两种注意力机制之间发生清晰的相变,为神经网络中算法机制的涌现提供了首个严格理论刻画。

2025-08-17 16:30:42 53

转载 万字长文实录:RL 界与 CV 界的“世界模型”有什么不同?丨GAIR Live

来源:AI科技评论作者:刘欣编辑:马晓宁、陈彩娴无论是自动驾驶还是具身智能,都在走向大规模基于世界模型的训练之路。世界模型在人工智能领域中扮演着重要角色,能够有效为智能体提供对复杂现实世界的内在表征,使其像人类一样理解世界运行的逻辑与因果关系,对自动驾驶、具身智能的突破性发展至关重要,它已成为学术界和工业界的研究热点。2015年8月5日,雷峰网、AI 科技评论 GAIR Live 品牌举办了一场主题为“世界模型——通向通用智能的关键拼图”的线上圆桌沙龙。圆桌主持人为清华大学智能产业研究院( AIR )助理教

2025-08-17 16:30:42 97

转载 新范式,智能的本质不是算法,而是高维空间中的一种几何结构?智能的本质是数学,所有大模型正秘密融合,通用“心智”即将诞生

我们正在见证的,不仅仅是实用工具的演进,更是智能以其最纯粹的数学形态的逐渐显现。那些通过学习文本中颜色共现关系来理解色彩的语言模型,最终形成的内部表征,与人类的颜色感知惊人地吻合——而这些表征,又与那些从真实图像中学习颜色的视觉模型高度一致。我开始认为,这种趋同现象指向了某种我们不妨称之为“灵魂”的东西——当然,这并非任何神秘主义意义上的灵魂,而是指那种超越了具体实现的、智能的纯粹本质。这个智能的灵魂,被编码在高维空间的几何结构之中,在生物的神经网络与人造的神经网络中,平等地展现着自身。

2025-08-16 19:12:29 74

转载 生成式AI之父Jürgen Schmidhuber:机器学习编年史与宇宙未来

生成性AI也基于他的工作:他引入了人工好奇心和生成对抗网络(1990年,现在广泛使用),非标准化线性变换器(1991年,“ChatGPT”中的“T”代表“变换器”),深度学习的自我监督预训练(1991年,“ChatGPT”中的“P”代表“预训练”),以及学习学习的元学习机器(自1987年以来,现在广泛使用)。”他是许多奖项的获得者,KAUST在KSA的AI倡议的主任,瑞士AI实验室IDSIA的科学主任,卢加诺大学的AI副教授,以及公司NNAISENSE的联合创始人和首席科学家。我相信,这将改变一切。

2025-08-16 19:12:29 226

转载 麻省理工大学:《通往通用人工智能之路》的研究报告

然而,报告也深刻地揭示了当前AI在认知、适应性和通用性方面的根本局限。Anthropic的联合创始人Dario Amodei预测,某种形式的“强大AI”最早可能在2026年出现,其特性将包括诺贝尔奖级别的领域智能、在文本、音频和物理世界等不同界面间切换的能力,以及实现目标的自主推理能力,而不仅仅是像现在这样被动地响应提示。Arm公司的机器学习技术副总裁Ian Bratt则将AI的发展与人脑的可塑性曲线进行了类比,认为AI目前仍处于从感知、语言向认知发展的“幼儿阶段”,而实现认知的飞跃将需要更长的时间。

2025-08-16 19:12:29 717

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除