【论文笔记】Attention总结二:Attention本质思想 + Hard/Soft/Global/Local形式Attention

Attention总结二:

涉及论文:

  1. Show, Attend and Tell: Neural Image Caption Generation with Visual Attentio(用了hard\soft attention attention)
  2. Effective Approaches to Attention-based Neural Machine Translation(提出了global\local attention)

本文参考文章:

Attention - 之二
不得不了解的五种Attention模型方法及其应用
attention模型方法综述
Attention机制论文阅读——global attention和local attention
Global Attention / Local Attention

本文摘要

  1. attention机制本质思想
  2. 总结各attention机制(hard\soft\global\local attention)
  3. attention其他相关

1 Attention机制本质思想

本质思想见:这篇文章, 此文章中也说了self-attention。
简答来说attention就是(query, key ,value)在机器翻译中key-value是一样的。
PS:NMT中应用的Attention机制基本思想见论文总结:Attentin总结一

2 各种attention

来说一下其他的attention:

  1. hard attention
  2. soft attention
  3. gloabal attention
  4. local attention
  5. self-attention:target = source -> Multi-head attention -(放attention总结三)

2.1 hard attention

论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.
hard attention结构
笔记来源:attention模型方法综述

soft attention是保留所有分量进行加权,hard attention是以某种策略选取部分分量。hard attention就是关注部分。
soft attention就是后向传播来训练。

hard attention的特点:
the hard attention model is non-differentiable and requires more complicated techniques such as variance reduction or reinforcement learning to train

具体

模型的encoder利用CNN(VGG net),提取出图像的L个D维的向量ai,i=1,2,…L,每个向量表示图像的一部分信息。
dec

<think>嗯,用户想了解如何复现GitHub项目Awesome-Transformer-Attention中的论文流程。首先,我需要明确用户的具体需求。复现GitHub项目通常涉及代码获取、环境配置、数据准备、模型训练等步骤。但用户提到的项目可能包含多个论文的实现,所以需要先确定具体是哪一篇论文。不过,根据用户提供的引用内容,他们提到了CaiT和DeepViT,这些可能属于该项目中的部分论文。 接下来,用户可能不太清楚如何系统地复现一个论文项目,尤其是在处理依赖和环境配置方面容易遇到问题。我需要考虑他们可能遇到的常见障碍,比如环境版本不兼容、数据集缺失或处理步骤复杂等。此外,用户可能需要指导如何阅读论文和对应代码,确保理解模型结构和超参数设置。 另外,引用中提到的LayerScale和class-attention layers在CaiT中的实现,可能需要特定的代码修改或配置。用户可能需要分步骤的指南,从克隆仓库开始,安装依赖,准备数据集,调整参数,到最终训练和验证模型。同时,注意事项部分也很重要,比如使用正确的commit版本、处理数据集路径、调试技巧等,这些都是复现过程中容易出错的地方。 用户可能还希望了解如何验证复现结果是否与论文一致,比如使用提供的预训练模型进行测试,或者比较性能指标。此外,针对不同的论文,比如CaiT和DeepViT,复现步骤可能有所不同,需要分别说明。考虑到用户可能对深度学习框架(如PyTorch)和Transformer架构有一定了解,但实践经验不足,指南需要详细但不过于技术化,避免使用行话,确保步骤清晰易懂。 最后,生成的相关问题需要覆盖复现过程中可能遇到的扩展问题,如调试技巧、优化方法、结果对比等,帮助用户进一步深入学习和解决问题。</think>### 复现GitHub项目Awesome-Transformer-Attention论文流程的步骤指南 #### 1. **明确目标论文** - 访问项目仓库 [cmhungsteve/Awesome-Transformer-Attention](https://github.com/cmhungsteve/Awesome-Transformer-Attention),找到需要复现的具体论文(如CaiT、DeepViT等)。例如: - **CaiT**论文复现需关注`LayerScale`和`class-attention layers`的实现[^2]。 - **DeepViT**需解决注意力崩塌问题,可能涉及注意力多样性增强模块。 #### 2. **环境配置** - **克隆仓库**: ```bash git clone https://github.com/cmhungsteve/Awesome-Transformer-Attention.git cd Awesome-Transformer-Attention ``` - **安装依赖**: - 根据项目`requirements.txt`安装指定版本的PyTorch、Transformers库等: ```bash pip install -r requirements.txt ``` - 若需GPU支持,需匹配CUDA版本与PyTorch版本。 #### 3. **数据准备** - 根据论文要求下载数据集(如ImageNet、CIFAR-100)并预处理: - 检查代码中数据加载路径(如`data/`目录),调整路径至本地数据集位置。 - 部分论文可能需特定数据增强(如RandAugment、Mixup)。 #### 4. **模型实现验证** - **代码结构分析**: - 核心模块(如`models/cait.py`)需包含`LayerScale`和`class-attention`层。 - 对比论文公式与代码实现,例如: ```python # 伪代码示例:LayerScale实现 class LayerScale(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): return x * self.gamma ``` - **超参数设置**: - 从论文附录或代码配置文件中获取学习率、权重衰减等参数(如CaiT可能使用`lr=1e-3`,`weight_decay=0.05`)。 #### 5. **训练与调优** - **启动训练脚本**: ```bash python train.py --model cait --dataset imagenet --batch_size 64 ``` - **监控训练过程**: - 使用TensorBoard或WandB记录损失和准确率。 - 若训练不稳定,尝试调整学习率或添加梯度裁剪。 #### 6. **复现验证** - **性能对比**: - 在验证集上测试模型,对比论文报告的Top-1准确率(如CaiT在ImageNet上可达82.8%[^2])。 - **预训练模型测试**: - 若项目提供预训练权重(如`pretrained/cait_s24.pth`),直接加载评估: ```python model.load_state_dict(torch.load('pretrained/cait_s24.pth')) ``` #### 7. **关键注意事项** - **版本控制**: - 使用与论文作者相同的Git commit版本(避免主分支更新导致的差异)。 - **硬件适配**: - 若GPU显存不足,减小`batch_size`或使用梯度累积。 - **调试技巧**: - 对单张图像过模型,验证前向传播是否正常。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值