Multi-View Domain Adapted Sentence Embeddings for Low-Resource Unsupervised Duplicate Question Detec

该研究针对低资源社区问答论坛中的重复问题检测,提出了一种名为MV-DASE的多视图领域适应句子嵌入框架。MV-DASE利用通用和领域特异性嵌入,结合GCCA集成sentence encoders,以提高无监督场景下的性能。在Stack Exchange数据集上,MV-DASE优于BM25、单视图系统和监督领域的对抗性方法。此外,它还在SemEval-2017 3B和无监督STS任务上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-View Domain Adapted Sentence Embeddings for Low-Resource Unsupervised Duplicate Question Detection

Abstract

  • 在低资源情况下解决特定领域社区问答论坛中的 Duplicate Question Detection (DQD) 问题
  • 提出 multi-view framework MV-DASE
    • 通过 Generalized Canonical Correlation Analysis 对 sentence encoders 进行集成
      • generic and domain-specific averaged word embeddings
      • domain-finetuned BERT
      • Universal Sentence Encoder
    • 仅使用无标注数据
  • 评估数据集:
    • CQADupStack
    • low-resource Stack Exchange forums
  • 通过结合不同 encoder 的优势,超过以下 baseline
    • BM25
    • single-view systems
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值