二分查找篇——在排序数组中查找元素的第一个和最后一个位置【LeetCode】

34. 在排序数组中查找元素的第一个和最后一个位置

一、算法逻辑(逐步通顺讲解每一步思路)

该算法用于在一个升序排列的数组 nums 中查找某个目标值 target第一个出现的位置和最后一个出现的位置

✅ 1️⃣ 定义 lower_bound 函数

def lower_bound(self, nums: List[int], target: int) -> int:
    left, right = -1, len(nums)
    while left + 1 < right:
        mid = (left + right) // 2
        if nums[mid] >= target:
            right = mid
        else:
            left = mid
    return right
  • 这个函数返回的是第一个大于等于 target 的索引位置
  • 使用的是左闭右开区间 [left+1, right) 的二分写法,可以避免边界处理错误。
  • 循环终止时,right 就是第一个满足 nums[right] >= target 的位置。

✅ 2️⃣ 查找目标值的起始位置

start = self.lower_bound(nums, target)
  • 如果 nums[start] != target 或者 start == len(nums),说明数组中不存在该元素,直接返回 [-1, -1]

✅ 3️⃣ 查找目标值的结束位置

end = self.lower_bound(nums, target + 1) - 1
  • 我们通过查找 target + 1 的第一个位置,再减 1,就得到了 target 的最后一个位置。
  • 因为数组是有序的,所以 target + 1 第一次出现之前的所有元素都是 target

✅ 4️⃣ 返回结果

return [start, end]

二、核心点总结

利用两次二分查找精准定位范围

  • 使用两次「lower_bound」分别找到起始位置和结束位置,避免了线性扫描,效率高。

巧妙的“target + 1”技巧

  • 不需要额外编写一个 upper_bound 函数,只需将目标值加一,即可复用 lower_bound 找出右边界。

适合面试高频题型

  • 本题是典型的二分查找变形题,考察对边界条件的理解和对二分思想的灵活运用。

可扩展性强

  • 此种思路也可推广到其他变种问题,如:统计某数字在排序数组中出现的次数(剑指 Offer 题)等。
class Solution:
    def lower_bound(self, nums:List[int], target:int)-> int:
        left, right = -1, len(nums)
        while left+1 < right:
            mid = (left+right)//2
            if nums[mid]>=target:
                right = mid
            else:
                left = mid
        return right

    def searchRange(self, nums: List[int], target: int) -> List[int]:
        start = self.lower_bound(nums, target)
        if start==len(nums) or nums[start] != target:
            return [-1,-1]
        end = self.lower_bound(nums, target+1)-1
        return [start, end]

三、时间复杂度分析

✅ 每次调用 lower_bound 是一个标准的二分查找过程:

  • 时间复杂度为 O(log n)

✅ 整体算法执行了两次二分查找:

  • 总体时间复杂度为 O(log n)

四、空间复杂度分析

✅ 整个过程中没有使用任何额外的数据结构:

  • 所有变量都是常数级的局部变量

✅ 空间复杂度为 O(1)


✅ 总结一句话

这段算法通过两次二分查找定位目标值的起始与结束位置,巧妙利用 target + 1 技巧避免重复编写 upper_bound,具有高效、简洁、稳定的特点,是解决有序数组中查找范围类问题的经典解法之一,非常适合作为面试准备的重点内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值