CMake构建学习笔记20-iconv库的构建

1. 构建

iconv是一个用于在不同字符编码(如 UTF-8、GBK、ISO-8859-1 等)之间进行转换的开源库。笔者在《c++中utf8字符串和gbk字符串的转换》这篇文章中介绍过如何在Windows下实现utf8字符串和gbk字符串的转换,不过该实现是基于Win32 API的,在其他平台中是无法使用的。如果需要跨平台,那么就需要使用iconv这样的库来统一实现。

不过麻烦的是iconv是GNU/Linux项目提供的库,不提供CMake的构建方式,以及原生的MSCV的构建方式。在Windows下的构建官方推荐使用MSYS2来进行构建。不过MSYS2构建出来的成果不一定能与MSVC构建的成果二进制兼容,而在Windows下还是使用MSVC的情况比较多。所以这就有点僵住了,只能寻求第三方的帮助。

这里笔者的解决方案是直接使用vcpkg。vcpkg是微软开发的C/C++跨平台开源库管理工具,试用了一下,感觉确实比以前进步很多,如果不是像笔者一样有自己的需求,完全可以都使用vcpkg来安装依赖库。

通过以下指令下载并安装iconv:

git clone https://github.com/microsoft/vcpkg
cd vcpkg
.\bootstrap-vcpkg.bat
.\vcpkg install libiconv:x64-windows

iconv就会安装在vcpkg的目录下,如下图所示:

iconv是个底层库,不需要其他依赖库,因此可以直接复制到笔者的仓库中使用,算是满足了笔者的需求。另外,不知道vcpkg的机制是什么,vcpkg确实也使用了cmake来构建,因为生成了cmake的配置文件,可以直接被CMake项目集成使用。最后,默认情况下vcpkg会检测环境内的VS,使用最高版本的VS来编译链接,构建的时候要保证与目标版本一致。

2. 示例

最后就直接给一个CMake项目调用刚才安装好的iconv库的示例吧。因为vcpkg在安装iconv的时候,也安装了相应的cmake的配置文件,所以可以直接在CMakeLists.txt集成,关键配置代码是:

# 项目代码设置为utf-8编码
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
    message(">> using Clang")
elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
    message(">> using GCC")
elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Intel")
    message(">> using Intel C++")
elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
    message(">> using Visual Studio C++")
    add_compile_options("/utf-8")
else()
    message(">> unknow compiler.")
endif()

find_package(Iconv REQUIRED)

# ...

target_link_libraries(${PROJECT_NAME} PRIVATE Iconv::Iconv)

注意,find_package要生效,需要保证CMake能够搜索到相应的库。如果是直接使用的vcpkg,那么需要将vcpkg集成到CMake搜索路径中:

vcpkg integrate install

如果是像笔者一样,是将iconv复制到自己仓库中使用,那么需要在CMake的内置变量CMAKE_PREFIX_PATH中增加自己的仓库路径(比如修改CMakePresets.json文件中CMAKE_PREFIX_PATH的配置)。

将utf8编码字符串转换成gbk字符串的代码示例如下:

#include <iconv.h>

using namespace std;

int main() {
  // 原始 UTF-8 字符串
  const char *utf8_str = "你好,世界!";

  printf("%s\n", utf8_str);

  size_t in_bytes_left = strlen(utf8_str);
  char in_buf[1024];
  strcpy(in_buf, utf8_str);
  char *in_ptr = in_buf;

  // 输出缓冲区(GBK)
  char out_buf[1024];
  char *out_ptr = out_buf;
  size_t out_bytes_left = sizeof(out_buf);

  // 打开 iconv 转换器:从 UTF-8 转换到 GBK
  iconv_t cd = iconv_open("GBK", "UTF-8");
  if (cd == (iconv_t)-1) {
    perror("iconv_open failed");
    return 1;
  }

  // 执行转换
  if (iconv(cd, &in_ptr, &in_bytes_left, &out_ptr, &out_bytes_left) ==
      (size_t)(-1)) {
    perror("iconv failed");
    iconv_close(cd);
    return 1;
  }

  // 关闭转换器
  iconv_close(cd);

  // 获取实际转换后的长度
  size_t converted_len = sizeof(out_buf) - out_bytes_left;

  // 直接写入二进制字节到 stdout(不经过 printf,防止转码)
  fwrite(out_buf, 1, converted_len, stdout);

  return 0;
}

运行结果如下所示:

浣犲ソ锛屼笘鐣岋紒
你好,世界!
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

charlee44

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值