机器学习的算法总结:
- 感知机
- 决策树
- 支持向量机
- 集成学习Adaboost
- 降维与度量学习
- 聚类
- 贝叶斯分类器
- 构造条件概率:回归分析和统计分析
- 高斯过程回归
- 线性判别分析
- 最近邻居法
- 径向基函数核
- 再生模型构造概率密度函数
- 最大期望算法
- 概率图模型
- 贝叶斯网
- Markov随机场
- 近似推断技术
- 马尔科夫链蒙特卡洛方法
- 变分法
- 最有法
- 生成塔普映射(generative topographic mapping)
深度学习的框架:深度学习里面主要是(特征学习和表征学习)
- 深度神经网络(DNN)
- 卷积神经网络(CNN)
- 深度置信网络(DBN)
- 循环神经网络(RNN)