专属领域大语言模型应用之LangChain核心模块models(一)

一、LangChain 项目介绍

对大语言模型的调用实际上是一次或多次上下文无关的独立事件,如果想要实现聊天、问答、API调用甚至一些更复杂的业务场景,直接去调用API是无法实现的。需要在这个过程里面整合不同类型的业务代码逻辑。

LangChain就是对这些通用逻辑做了封装,让使用者可以不用关注在与大模型之间的交互细节,能够更专注在业务本身上,通过组合模块和能力抽象来扩展 LLM 的能力,通过 chain、agent、model 等多种封装工具,提供了扩展 LLM 使用场景、便捷 LLM 调用方式的一系列功能。LangChain支持Python、js、ts语言。

1. LangChain的设计思路

CHAIN 就像缝合剂,它把多种能力进行缝合,其中有一部分能力是LangChain内置的,比如说上下文管理(Memory),工具类(Agents)等,我们也可以基于LangChain进行定制与开发,这就是LangChain的设计思路。

2. LangChain 主要具备的核心模块

  • Prompts,模板化、动态选择和管理模型输入
  • Models,通过通用接口调用语言模型
  • Parser,标准化输出模型返回信息
  • Memory,上下文信息存储功能
  • Chains,将零散的功能逻辑串联成完整的业务流程
  • Agents,工具类的合集,解决大模型处理不了的问题

3. LangChain 的应用场景

  • 问答机器人
  • 摘要汇总
  • 聊天机器人
  • 数据查询
  • 与接口交互
  • 理解代码

4. LangChain 的价值

最近几个月, LangChain 已经成为了 AIGC 领域最火的框架。

看到这里,可能很多人心存疑问,为什么开发者要用 LangChain 而不是直接使用 OpenAI 所提供的方法呢?原因是目前的 GPT 模型存在以下的缺点,在产品中集成与使用依然需要大量的成本:

  • max token 限制
  • 无法,私有化模型
  • 没法,查询数据库
  • 数据截止2021年Q3
  • 不能调用第三方 API
  • 无法联网
  • 无法对接外部工具
  • 数据隐私
  • 输出结果不稳定

LangChain 与之对比,就形成了自己的优势。他封装的抽象或抽象出来的能力,确实可以解决大语言模型使用过程中的一些痛点。比如大语言模型返回信息的不确定性,如果每次调用接口的结果是不确定的,你需要在这个过程中,进行大量的异常处理信息。

LangChain 作为大语言模型和应用产品之间的一个桥梁和媒介。LangChain 则很好的解决了GPT模型存在的问题。

5. 环境配置与安装

环境配置:

  • 科学上网环境
  • Python环境
  • API Token

LangChain安装:

  • 通过 pip 安装 langchain:
pip install langchain
  • 通过 pip 安装 openai:
pip install openai

6. LangChain 相关学习资料

LangChain Python 官方教程:https://python.langchain.com/

LangChain GitHub 源码地址:https://github.com/langchain-ai/langchain

deeplearning教程:https://learn.deeplearning.ai/langchain

二、LangChain 核心模块 models

### 数据库结合大模型实现问答系统的概述 现代数据库技术大模型相结合,能够显著提升非结构化数据的应用价值。这种结合主要体现在以下几个方面: #### 非结构化数据的处理 随着大数据时代的到来,传统的关系型数据库已无法满足对文本、图像、音频和视频等非结构化数据的有效管理需求。大模型技术的发展为此提供了新思路。通过引入大模型的能力,可以更高效地处理这些复杂的数据形式[^1]。 #### 向量数据库的作用 向量数据库作为支持大模型的重要基础设施之,在存储和检索嵌入式表示(embeddings)方面发挥着核心作用。具体来说,工具如 Towhee 可以帮助将非结构化数据转化为高维向量,并将其存入专门设计用于快速相似度查询的向量数据库中[^4]。这步骤对于构建高效的语义搜索引擎至关重要。 #### LLM 的集成方式 为了使企业的业务系统充分利用最新的 AI 进展成果,需要制定合理的架构规划来融合大型语言模型 (LLMs) 。例如,“引言”部分提到过的个典型应用场景涉及到了如何定义并实施这样的集成交互流程[^2]。这意味着不仅要考虑前端用户体验界面的设计,还需要深入探讨后端服务层面上的具体操作细节和技术选型依据等问题。 #### 自定义专用模型的可能性 除了直接利用开源社区提供的通用版本之外,还可以进步探索针对特定领域知识图谱定制专属解决方案的方法路径。比如在农业植保场景下开发了个名为 ChatLLM 的模块实例;它允许使用者灵活替换底层所依赖的语言预测引擎——即既可以沿用官方推荐的标准配置选项(Yi-34B-chat),也可以根据实际需求自行调整参数设置或者导入经过本地标注样本重新训练后的优化版替代品[^3]。 综上所述,当我们将上述各个组成部分有机结合在起时,则可形成套完整的基于数据库联合运用先进算法框架完成智能化自动应答任务的整体策略模式。 ```python import towhee from langchain import PromptTemplate, LLMChain # Example of embedding non-structured data into vectors using Towhee. data = ["This is a sample sentence.", "Another example here."] vectors = towhee.glob['text'](data).dc.embed_text(model_name='all-MiniLM-L6-v2').to_list() # Define prompt template and create an instance of the chain with chosen model. template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt) # Simulate user interaction by feeding questions to the chatbot system powered by custom-tuned models if necessary. response = llm_chain.run({"question": "What are some common pests affecting crops?"}) print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值