poj 2186 Popular Cows 强连通分量

本文介绍了一种利用强连通分量和有向无环图(DAG)解决特定图论问题的方法。该问题要求找出受所有牛欢迎的牛,通过构建牛之间的关系图并运用图论算法,可以有效地解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

http://poj.org/problem?id=2186

题意:

一群牛中,每个牛都有自己认为的受欢迎的牛,如果A认为B受欢迎,B认为C受欢迎,那么A也会认为C受欢迎。问题来了:给定一个牛之间受欢的关系图,牛用1~n的数代替。找出所有的受n头牛欢迎的牛,输出它们所代表的数字。

思路

一道有情景的题目,蛮有意思的但就是想不出(╥╯^╰╥)。看了题解又觉得简单。
受所有欢迎,在图中就是所有点都能够到达的点,如果图是强连通图,那么每头牛都是。如果有强连通分量,缩点后会形成dag,要求所有点都能到达某个点,所以这个点一定是在dag中的“末端”,也就是出度为0点的。但是如果有多个就不符合题意了,因为dag肯定不会有环,两个出度为0的点间不会连通。所以在dag中,如果有大于1个出度为0的点,答案为0.如果只有一个,答案就是这个强连通分量所代表的所有点。

#include<cstdio>  // 强连通缩点:求出DAG中:出度为0的点
#include<queue>
#include<iostream>
#include<vector>
#include<map>
#include<cstring>
#include<string>
#include<set>
#include<stack>
#include<algorithm>
#define cle(a) memset(a,0,sizeof(a))
#define inf(a) memset(a,0x3f,sizeof(a))
#define ll long long
#define Rep(i,a,n) for(int i=a;i<=n;i++)
using namespace std;
const int INF = ( 2e9 ) + 2;
const ll maxn = 1e4+10;
vector<int> g[maxn];
int time,num;
int dfn[maxn],low[maxn],instack[maxn],Out[maxn],scc[maxn];
stack<int> s;
void tarjan(int u)
{
    dfn[u]=low[u]=++time;
    instack[u]=1;
    s.push(u);
    for(int i=0;i<g[u].size();i++)
    {
        int v=g[u][i];
        if(!dfn[v])
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else if(instack[v])
            low[u]=min(low[u],low[v]);
    }
    if(low[u]==dfn[u])
    {
        num++;
        int x;
        do
        {
            x=s.top();s.pop();
            instack[x]=0;
            scc[x]=num;
        }while(x!=u);
    }
}
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        time=num=0;
        while(!s.empty())s.pop();
        memset(dfn,0,sizeof(dfn));
        memset(low,0,sizeof(low));
        memset(Out,0,sizeof(Out));
        for(int i=1;i<=n;i++)g[i].clear();
        for(int i=0;i<m;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            g[u].push_back(v);
        }
        for(int i=1;i<=n;i++)
        if(!dfn[i])tarjan(i);

        for(int i=1;i<=n;i++)
        for(int j=0;j<g[i].size();j++)
        {
            if(scc[i]!=scc[g[i][j]])
            Out[scc[i]]++;
        }
        int ans=0,cnt=0;
        for(int i=1;i<=n;i++)
        if(Out[scc[i]]==0)ans++;
        for(int i=1;i<=num;i++)
        if(Out[i]==0)cnt++;
        if(cnt>=2)
        printf("0\n");
        else
        printf("%d\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值