【渲染流水线】[光栅阶段]-[光栅插值]以UnityURP为例

【从UnityURP开始探索游戏渲染】专栏-直达

前情提要

【渲染流水线】主线索引-从数据到图像以UnityURP为例-CSDN博客

裁剪的目标

  • 作用‌:将几何图元(三角形)转换为片元(Fragment),并插值顶点属性(如纹理坐标)
  • 可配置‌:通过 Cull 指令控制面片剔除模式(Back/Front/Off)。

对渲染的探索是个持续不断完善的过程,记录这个过程将零散的内容整理起来,其中肯定会有理解偏差和问题,如果哪里有问题,欢迎在评论区探讨和指出)

三角形设置 Triangle Setup

预先计算全局系数

  • 优化遍历效率;实时计算则结合像素位置完成‌动态插值‌,确保透视正确性‌。

输入:

  • 屏幕坐标系下的三角形顶点坐标(包含深度值 z
  • 关联属性:法线、纹理坐标、顶点颜色等‌

生成:

  • 计算边界框‌:确定三角形在屏幕上的最小/最大像素范围(x_miny_min 至 x_maxy_max),限定后续遍历区域‌。
  • 生成边方程(效率低,用点积求重心方式判断替代的话这里不用求解这个):构建三角形三条边的线性方程(如 Ax+By+C=0),用于后续像素覆盖判断‌
  • 重心坐标分母项‌:预计算重心坐标插值所需的公共分母(如 1/(w0·α + w1·β + w2·γ)),避免遍历阶段重复计算‌(由于使用点积重心坐标求解重心和像素判断,其中解方程组时有一个共同的行列式分母需要点积计算,这里可以把分母预计算,下面阶段就可以直接用。 点积重心求解坐标下面的三角形遍历阶段有解释。)
  • 与像素位置无关的数学系数,供遍历阶段复用。

三角形遍历 Triangle Traversal (扫描变换 ScanConversion)

输入数据

  • 三角形设置阶段输出的网格表示数据‌

输出数据

像素覆盖检测

  • 遍历边界框内所有像素,通过边方程重心坐标判断(点积重心坐标求解代替叉乘面积求解加速优化运算)中心点是否在三角形内部‌

片元生成

对覆盖的像素创建片元(Fragment),包含以下状态:

  • 屏幕坐标 (x, y)
  • 插值后的深度值 z
  • 插值后的属性:法线、纹理坐标、颜色等‌

深度初筛

  • 初步计算片元深度,供后续深度测试使用‌

输出 片元序列(每个片元包含像素位置、深度及插值属性),传递至片元着色器‌

利用重心坐标权重混合顶点属性,确保纹理、颜色等平滑过渡‌:

属性pixel=α⋅属性A+β⋅属性B+γ⋅属性C属性pixel=α⋅属性A+β⋅属性B+γ⋅属性C

点积法重心坐标公式解析

URP中光栅化的具体过程举例

Unity URP的光栅化阶段,几何图元通过重心坐标公式转化为片元的过程:

三角形设置阶段

  • 首先计算三角形在屏幕空间的包围盒,确定潜在覆盖的像素范围。
  • 例如一个三角形顶点坐标为(100,200)、(300,400)、(200,500),其包围盒范围为x∈[100,300],y∈[200,500]。

三角形遍历与片元生成

  • 遍历包围盒内所有像素,通过重心坐标判断是否在三角形内。重心坐标公式为:
  • α+β+γ=1(α,β,γ≥0)α+β+γ=1(α,β,γ≥0)
  • 若像素(150,300)的重心坐标计算结果为α=0.4, β=0.3, γ=0.3,则该像素属于三角形。

透视校正插值

  • 使用公式对顶点属性进行插值:
  • f=(αf0/w0+βf1/w1+γf2/w2)/(α/w0+β/w1+γ/w2)f=(αf0​/w0​+βf1​/w1​+γf2​/w2​)/(α/w0​+β/w1​+γ/w2​)
  • 例如插值纹理坐标时,若三个顶点的w值为1.0、1.2、1.1,UV为(0,0)、(1,0)、(0,1),则像素(150,300)的UV插值结果为(0.28, 0.23)45。

具体案例:

  • 一个红色渐变三角形,顶点颜色分别为红(1,0,0)、绿(0,1,0)、蓝(0,0,1)。
  • 片元(200,350)的重心坐标为(0.5,0.3,0.2),插值后颜色为(0.5,0.3,0.2)。

对于透视矫正的插值原理和示例看这里:【URP】[光栅阶段][光栅插值]Unity透视校正插值-CSDN博客

光栅化在URP中的具体实现

核心类与方法

在URP管线中,相关逻辑由以下部分实现:

  • UniversalRenderer类‌:负责组织渲染流程,通过RenderOpaqueGeometry等方法触发光栅化
  • ShaderLibrary/Core.hlsl‌:包含插值计算的底层实现,如InterpolateBarycentricCoords等工具函数
  • GPU固定功能单元‌:实际计算由硬件光栅化器完成,Unity通过CommandBuffer.DrawProcedural等接口触发

GPU加速机制

重心坐标计算通过以下方式实现硬件加速:

  • 由GPU的‌光栅化引擎(Rasterizer Engine)自动执行,属于固定管线功能
  • Unity通过ShaderPass中的HLSLPROGRAM声明插值变量(如Varyings结构体),驱动GPU完成插值
  • 计算过程优化为并行处理,每个流处理器(SM)同时处理多个像素的重心坐标

典型数据流路径为:
UniversalRenderer → Shader.Draw → GPU光栅化器 → 片元着色器(接收插值后数据)

接下来:【渲染流水线】[光栅阶段]-[片元着色]以UnityURP为例-CSDN博客


【从UnityURP开始探索游戏渲染】专栏-直达
(欢迎点赞留言探讨,更多人加入进来能更加完善这个探索的过程,🙏)

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淡海水

感谢支持 共同进步 好运++

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值