动态连通性问题的加权quick-union算法实现

博客围绕加权quick-union算法展开,采用小树挂大数思想。介绍了算法图解,给出代码并进行测试。还说明该算法处理N个触点和M条连接时最多访问数组cMlgN次,同时提及各种union-find算法性能特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 算法图解

采用的是小树挂大数的思想。

二 代码

package common;

/**
* @className: WeightedQuickUnionUF
* @description: 动态连通性问题的加权quick-union算法实现
* @date: 2021/2/25
* @author: cakin
*/
public class WeightedQuickUnionUF {
    private int[] parent;   // 分量parent
    private int[] size;     // 每个连通分量的大小
    private int count;      // 连通分量个数

    /**
     * 功能描述:初始化触点以及连通分量
     *
     * @param n 触点个数
     * @author cakin
     * @date 2021/2/25
     */
    public WeightedQuickUnionUF(int n) {
        count = n;
        parent = new int[n];
        size = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
            size[i] = 1;
        }
    }

    /**
     * 功能描述:连通分量的数量
     *
     * @return int 连通分量的数量
     * @author cakin
     * @date 2021/2/25
     */
    public int count() {
        return count;
    }

    /**
     * 功能描述:p触点所在的连通分量
     *
     * @param p p触点
     * @return int 触点所在的连通分量
     * @author cakin
     * @date 2021/2/25
     */
    public int find(int p) {
        validate(p);
        while (p != parent[p])
            p = parent[p];
        return p;
    }

    /**
     * 功能描述:判断p触点和q触点是否连通
     *
     * @param p 第1个触点
     * @param q 第2个触点
     * @return boolean 是否连通
     * @author cakin
     * @date 2021/2/25
     */
    @Deprecated
    public boolean connected(int p, int q) {
        return find(p) == find(q);
    }

    // validate that p is a valid index
    private void validate(int p) {
        int n = parent.length;
        if (p < 0 || p >= n) {
            throw new IllegalArgumentException("index " + p + " is not between 0 and " + (n - 1));
        }
    }

    /**
     * 功能描述:在p和q之间添加一条连接
     *
     * @param p 第1个触点
     * @param q 第2个触点
     * @author cakin
     * @date 2021/2/24
     */
    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ) return;


        // 小树挂在大树的根节点下
        if (size[rootP] < size[rootQ]) {
            parent[rootP] = rootQ;
            size[rootQ] += size[rootP];
        } else {
            parent[rootQ] = rootP;
            size[rootP] += size[rootQ];
        }
        count--;
    }

    /**
     * 功能描述:加权quick-union算法测试
     *
     * @param args 命令行
     * @author cakin
     * @date 2021/2/25
     */
    public static void main(String[] args) {
        // 读取触点数量
        int n = StdIn.readInt();
        // 初始化N个分量
        WeightedQuickUnionUF uf = new WeightedQuickUnionUF(n);
        while (!StdIn.isEmpty()) {
            // 读取整数对
            int p = StdIn.readInt();
            int q = StdIn.readInt();
            // 如果已经连通,则忽略
            if (uf.find(p) == uf.find(q)) {
                continue;
            }
            // 归并分量
            uf.union(p, q);
            // 打印连接
            StdOut.println(p + " " + q);
        }
        // 打印分量数量
        StdOut.println(uf.count() + " components");
    }
}

三 测试

F:\Algorithm\target\classes>java common.QuickFindUF < tinyUF.txt
4 3
3 8
6 5
9 4
2 1
5 0
7 2
6 1
2 components

四 说明

加权quick-union算法处理N个触点和M条连接时最多访问数组cMlgN次,其中c为常数。

各种union-find算法性能特点

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值