BBM的开源HUB
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
第十一节:Keras深度学习框架实战之数据集
在深度学习的数据集格式中,常用的有csv、json、npy/npz格式等等,这一节我们主要介绍这几种数据集格式的制做和读取。这其中我们介绍 csv格式,npz格式,coco数据集格式,pascol voc格式。原创 2022-05-24 09:57:48 · 688 阅读 · 0 评论 -
第十二节:Keras深度学习框架实战之结束语
总结我们这次有关keras的课程,主要还是从初学者角度,将着重的的基础的知识介绍给小伙伴们,其目的在于可以完全上手进行开发。TensorFlow 是众多优秀的机器学习和深度学习框架中最成熟的一个,也是研究论文中引用最多的一个,而且在生产中的使用效果也很好。它可能不是最容易学习的框架,但随着 TensorFlow 2的到来,TensorFlow 的门槛也没有 2016 年那般高了。TensorFlow 2.0 官网对该项目的描述为:“端到端的开源机器学习平台。”,谷歌通过“平台”提供了一个包含工具、库以及社区原创 2022-05-31 23:36:17 · 233 阅读 · 0 评论 -
第十节:Keras深度学习框架实战之波斯顿房价回归预测
Keras深度学习框架实战之波斯顿房价回归预测原创 2022-05-16 11:50:59 · 663 阅读 · 0 评论 -
第九节:Keras深度学习框架实战之损失函数
机器通过损失函数进行学习。这是一种评估特定算法对给定的数据建模程度的方法。如果预测值与真实值之前偏离较远,那么损失函数便会得到一个比较大的值。在一些优化函数的辅助下,损失函数逐渐学会减少预测值与真实值之间的这种误差。原创 2022-05-09 17:16:42 · 728 阅读 · 0 评论 -
第七节:Keras深度学习框架之数据集
keras数据集官方网站提供了七大数据集,官方网址:https://keras.io/api/datasets/,已矢量化,采用Numpy格式,可用于调试模型或创建简单的代码示例。这里我们介绍一下其中的七大数据集的下载及使用方法。1、手写数字数据集:MNIST2、小图像:CIFAR103、小图像:CIFAR1004、IMDB电影影评情感分类:imdb5、路透社新闻专线主题分类:Reuters6、时尚元素数据集:fashion_MNIST7、波斯顿房价回归.原创 2022-04-24 22:42:20 · 354 阅读 · 0 评论 -
第八节:Keras深度学习框架之优化器
优化器是keras在模型编译时需要的参数之一原创 2022-05-02 02:34:20 · 797 阅读 · 0 评论 -
第三节:Keras深度学习框架实战之构建网络模型UNet
Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况。在使用Keras构建UNet模型前,你一定要完成这三个章节的学习,这样搭建此模型时更加方便,这三个章节为:Keras深度学习框架之网络层、Keras深度学习框架之卷积层、Keras深度学习框架之池化层。原创 2022-04-03 15:21:24 · 2322 阅读 · 0 评论 -
第六节:Keras深度学习框架之池化层
在卷积神经网络中通常会在相邻的卷积层之间加入一个池化层,池化层可以有效的缩小参数矩阵的尺寸,从而减少最后连接层的中的参数数量。所以加入池化层可以加快计算速度和防止过拟合的作用。 池化的原理或者是过程:pooling是在不同的通道上分开执行的(就是池化操作不改变通道数),且不需要参数控制。原创 2022-04-18 19:47:01 · 1093 阅读 · 0 评论 -
第五节:Keras深度学习框架之卷积层
卷积层负责提取特征,采样层负责特征选择,全连接层负责分类,卷积神经网络说到底,就是起到一个分类器的作用。原创 2022-04-17 18:34:24 · 372 阅读 · 0 评论 -
第四节:Keras深度学习框架之网络层
keras的层主要包括:常用层(Core)、卷积层(Convolutional)、池化层(Pooling)、局部连接层、递归层(Recurrent)、嵌入层( Embedding)、高级激活层、规范层、噪声层、包装层,当然也可以编写自己的层。原创 2022-04-10 13:02:30 · 2881 阅读 · 0 评论 -
第二节:Keras深度学习框架实战之手写体识别
手写体识别是keras所自带的七个数据集中的一个,用于识别0-9的10阿拉伯数字的手写体,该数据集大约有6000张28*28的手写体图片组成。我们本节课将通过后写体识的这样一个例子,先给大家展示一下使用keras搭建深度学习的过程,为后续的学习做一个概括性的学习。这样更加有利于大家在今后的学习中能更方便的撑握学习要点。原创 2022-03-30 19:13:13 · 1167 阅读 · 0 评论 -
第一节:Keras深度学习框架之环境搭建
从本节开始,我们将进入到Keras的详细介绍和代码精读,为开始我们的Keras之行,我们首先要搭建一个学习平台。现在让我们开始吧。原创 2022-03-27 13:23:43 · 6922 阅读 · 1 评论