游戏窃贼与 WERW-Kpath:黑手党网络中节点和边中心性的两种新度量
1. 引言
现实世界中的复杂系统可以被建模为由节点通过边连接的同质或异质图。节点和边的重要性通过一组称为中心性的度量来正式描述,这些度量通常用于研究小规模的图。随着数字数据集的激增,出现了拥有数十亿节点和边的巨大图。因此,需要开发更高效、可扩展和准确的算法来计算节点和边的中心性。本文介绍了两种新的算法——Game of Thieves (GoT) 和 Weighted Edge Random Walks-K Path (WERW-Kpath),它们在计算复杂性方面更为轻量,适用于传统中心性度量,如度、节点和边的介数、接近度和聚类系数。
2. 新算法介绍
2.1 Game of Thieves (GoT)
GoT 算法通过模拟多个“窃贼”在网络中移动,每个窃贼试图从一个节点移动到另一个节点,以获取资源。最终,通过统计每个节点被访问的频率来确定其重要性。GoT 算法的优点在于它能够在较短时间内提供一个相对准确的节点和边的中心性排序。
2.2 Weighted Edge Random Walks-K Path (WERW-Kpath)
WERW-Kpath 算法则是通过在加权边上的随机游走来评估边的重要性。它通过设定一个固定长度的路径(K-path),并在路径上进行多次随机游走,最终统计各边被访问的次数来确定其重要性。WERW-Kpath 特别适用于对边进行排名,因为它能更好地捕捉边在网络中的作用。
3. 实证分析
为了验证这两种新算法的有效性,我们使用了从三个黑手党行动的司法文件中提取的真实犯罪网